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QUADRATIC AND CUBIC NON-LINEARITIES
IN A QUASI-LINEAR FORCED SYSTEM

NGUYEN VAN DINH
Institute of Mechanics, NCNST of Vietnam

SUMMARY. In [3], the difference between the quadratic non-linearity and the cubic one in
a quasi-linear parametrically - excited system has been analyzed. In the present paper, the same
question will be examined for a quasi-linear forced system and analogous results as in [3] will be

obtained.

§1. SYSTEM UNDER CONSIDERATION AND DIFFERENT FORMS
OF ITS DIFFERENTIAL EQUATION

Let us consider a quasi-linear forced system, described by the differential equation:

i+vic=p2° — 45 + Az — hi+qcosvt _ (1.1)

where g > 0, v > 0 are intensity and frequency of forced excltatlon respectlvely, the signification
of other symbols has been explained in [3].

Assuming that the order of smalluess of b and g is €%, the differential equatlon (1.1) can be
written in the following forms, depeénding on the orders of sma.llness of 3, v and A:

- 1if A, v, & are of order 52, we have: ‘

i+ 1%z = e?{fa® — 42° + Az — hi + geosvi) ‘(1.2]
- if A, v, A are of order &, we have:
i+ 1P =e{fa® —yr® + Az} + & { — hi + geos vt} (1.3)
- at last, if B is of order £ while v and A are of order €2, we have:

i+ iz = s{ﬂa:z} + e2{—yz® + Az - hi + gcos vt} (1.4)

As in [3] the case in which v and A are of dliferent orders is rejected and, for the sake of
simplicity, v is assumed to be positive.

§2. SYSTEM WITH THE NON-LINEARITIES OF ORDER ¢?

First, we shall examine the case described by the differential equation (1.2). As in (3], the
asymptotic method is used and we obtain successively
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A1=0, B]_ :0, ‘h'.1=0,
w2V Ay = hva + gsind, (2.1)

3

—2vabB; = Ae — 1’1&3 + gcosé,
and

Q= ——a—{hu + gsin.t?},

2v a
(2.2)

E'yaz + 9 cos 9}
4 a ’

Setting the right-hand sides of (2.2} equal to zero yields:

.1
f=-{a-

av+ Lsing =0,
a
A-304 Leosh=0 (23
278 S s =0,

and, after eliminating §, the relationship between the amplitude o and the frequency v of the
stationary oscillation is obtained:

W (a,v?) = ag{ [z‘qag i 1)]2 + hzyz} -4 =0 (2.4)

To study the stability of the stationary oscillation (ag,0o) the pertubations 6a, §6 are intro-
duced, namely:

5a=a.-—a0, 56=0—60 {25)

It is easy to establish the variational system:

(6a)' =1 sinfg - ba — 21 cosfp - 66,

2uaq v

(2.6)

: 1 3 q g .
50) = —o——{ =2+ 7908 - Lcosto}s 6o - 66
( ) Tvag 4')'0.0 . cosl ofoat vag s1n g )
and its characteristic equation:
1 W (ag, v3)
2 04
4 +he 81/2(1.0 aao ( }
Since A > 0, the sufficient condition for stability is:
AW (ag, V%) '
—" >0 2.8
afbg ( )

Obviously, in the case considered, the system is nearly identical to the classical forced one [1, 2J:
the hardness of the system is determined by the cubic non-linearity and, in the first approximation,
the quadratic non-linearity does not affect the amplitude, the phase as the stability of the stationary
oscillation.

§3. SYSTEM WITH THE NON-LINEARITIES OF ORDER «

For the second case, described by the differential equation (1.3}, the unknown functions in the
asymptotic expansion are:
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1
A; =0, By =-=—{A-"~ad?},
1 1 2u{ 47 }
gat  ga 74
1= 073 7 apt cos 29 + 5 = co8 3y, (3.1)

— 2vAp = hva + gsiné,
E@iaa 39 a4 2
612 1282 412

and the differential equations for ¢ and §, in the second approximation, are of the form:

3 2
— 2raB, = [A - E'yaz]- + geosf,

.G = —j—{hu+ gsint?},
21V 5 as 2 3P -1-20(3 (v? - 1)? (3:2)
; -t -1 g
R o U
SR TYRCAVILY P VELD R e v
562 3
where 0 = ~—: 17
The amplitude ¢ and the phase § of the stationary oscillation satisfy the equations:
? ing —
hv + =sinf = 0,
¢ (5.3)

5 /3 2)2 32120 (3 2) . (2 -1)2 ¢
< SRR Sy 4 —)+ T T =0
24,2 (479 202 i + )+ v + a °° !

and the relationship between a and v is:

(- 1)?
%

5 /3 \% 3P-1-2/3 , 2 2., 5
241,2(;%) ““—“272““(;7“)””‘1” |t} = =0
{3.4)

It is noted that, for each given value v? in the neighbourhood of umnity, the algebraic equation
(3.4) of unknown a® has no morve three acceptable solutions. Indeed, {3.4) can be rewritten in the

form:

Wia,1?) = a?{ |

5 2 3w —1- 20 . a (Vz - 1)2J2 Q2 2 2
_ _ | e R . 5
[241/2 X (A1) 5 R (3.5)
where: 3 3
X= Z'raz, Qz_ = 2’742

In the plane (XY) let us draw the graphs ¥, and Y3 of the left and right-hand sides of (3.5),
respectively (Fig. 1). The graph ¥ has two minima on the abscissa axis: M) near X = 0 and M,
near X = 24/5. The graph ¥3 is a hyperbola quite near its asymptotes: the ordinate axis X = 0 and
the abscisse line ¥ = —hZu%. For h = 0 the mentioned graphs intersect themselves at two points
P and Q located in the neighbourhood and on both sides of M. When A increases, the graph ¥;
is shifted downward, P and @ approach M, then coincide in it and finally diseappear. Obviously,
the abscisses of P and } are two solutions of the equation (3.5). However, these soluticns must be
rejected since the corresponding values a? = 4X/3 are too large {for standard variable). Thus,
the equnation (3.5) {i.e. the equation (3.4)) admits no more three acceptable solutions near X = 0.

To study the stability of the stationary oscillation (ap, fg), we use:

- the variational system:

(a) = 2:% sinfo -6a— 57 cosdo -89, (3.6)
: 1 5 (3 5)\? 302 —1-26 (3 g g

9 =g 0 25 o) -2 o () - s s

(E0) =~ ey 1 g (37 27 \gIH) T g costoptat o gy smbo 84,
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and its characteristic equation:

1 ow (ag y VQ}
81%ag Jag

0%+ hp+

From (3.7} the following sufficient stability condition is deduced:

W (ag, v?)
Bao

>0,

[

=0.

ol m,

Frg. 1

resonance curves for the typical case:

ﬂaz ﬁaz
A =0 By =0 =20
1 bl 1 3 Uy . 2!/2 61}2

—2vA; = hva + gsiné,

23

“— cos 29,

. 5F% 3
— 2vaBy = (gg'g— E"/)GS +Aa+ gcosf,
and @
o= -—{}w+ Esins},
2p. a
. Lys1 13582
f = ___{(____ __)_E_a?_g_(y?—l) +gcosﬁ},
2wl 2/ 6 a

2475 X

The structure of {3.4) shows that the character (soft-hardness) of the system is determined
by the cubic non-linearity v {-y > 0, the system belongs to hard kind) and the quadratic one 8 (o
- of order ¢£) plays only a supplementary role (it makes the system less hard). Figure 2 shows the

3
h% = 0.0002; ¢° = 0.00025; Zq:ozg o =0 (a) and & = 0.05 (b}

4. SYSTEM WITH THE NON-_LINEARITIES OF DIFFERENT ORDERS

In the third case, described by the differential equation (1.4), the quadratic non-linearity is of
order & while the cubic one is of order £2. The asymptotic method gives us successively:

(4.1)

(4.2)




where -
1 3 542
=y
vi 4 6

The equations for @ and & in the stationary oscillation are:

h + 2sinﬂ:O,

4.3}
1 Sﬂ q (
(;Em;ﬁ) a® +(v? - 1]+Ecosﬁ=0,
and the relationship between @ and v is:
v 56° , 2
2y _ 2 1 2.2 _ 23 _
. W(a,v’) =a {[(v2 ,,2) 6 @t + (- 1)] Ay } 7 =0 (44)
To study the stability of the stationary oscillation (ag, #5) we use:
- the variational system:
(8a) = =Z—sinfo - fa — - cos o - 64, (4.5)
2vag 2v
: 1 1 5,52 q 7 .
56) = — {z( _,_) . EPYY’ }5 8o - 69,
( ) 2rag 2 I/Sz 6 [Lhy] cosfojoa+ 2vag v
- and its characteristic equation:
1 c'}W(ag v?)
*+h L =0 4.6
Pt hp 8u2a, dag (4.6)
The stability condition is as previcusly:
oW (aq, 7) '
RS S 1 T
o {4.7)

Analogous to the coresponding case in (3], the interesting phenomenon in the last case is that
the character (soft-hardness) of the system under consideration depends on ¢? i.e. on the ratio of
A% and 1 .

- if 2 is enough greater than 1, the system belongs to soft kind,

- if 12 is enough less than 1, the system becomes hard one,

- if 2 is close to 1, the system is neutralized, it becomes a linear one.

. . . 5 2
Figure 3 shows the resonance curves for the typical case: A% = 0.0003; ¢° = 0.0003; —g— =

3 3 3
0.04 and I’r = 0 {a) (the resenance curve leans to the left), *g- = 0.04 (b), —:«- = 0.08 (c) (the

resonance cuarve leans to the right).

CONCLUSION

The results obtained show the difference between the gquadratic non linearity and the cubic
one. If the two non-linearities are of the same order of smallness, the cubic non-linearity is the
dominant factor, on the contrary, if they are of different orders, the character (soft—ha,rdness) of
the system depends on both them, in equal degree.

This publication is completed with financial support from the National Basic Resea,rch Pro-
gram in Natural Sciences,
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PHI TUYEN BAC HAI VA BAC BA
TRONG MOT HE A TUYEN cUONG BUC

Tiép tuc van 48 d4t ra trong (3], bii bio ndy xét vai trd cic s8 hang din hdi phi tuyén bic
hai va bic ba trong mdt hé dao ddng 4 tuyén cuwdng birc. Két qui thu dwyce cho thiy:

- Néu hai s3 hang phi tuyén néi trén & cling cip (e hodc £?), s8 hang bac ba quyét dinh tinh
cing m&m cda hé, s8 hang bic hai chi ¢6 dnh hwdng b8 sung;

- Néu s8 hang bic hai & cip e va 58 hang bic ba & cip £, tinh cing mém cda hé phu thude
¢4 vio hai s8 hang d6 va vi vy, tily “t s&” giita chiing, hé cd thé thudc loai citng hojc mEm hoic
bi “trung hoa”.
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