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0. INTRODUCTION

Parametric cscillation of the rectangular thin plate on the elastic foundation with two coeffi-
cients, when making mention of the creep of material, has been investigated in earlier publications
(see for example {2, 3]). However, forced oscillation of the rectangular thin plate, to the author’s
knowledge, has not been hitherto examined.

\This problem is studied here by means of an asymptotic method for high-order systems [1]

and boundary value problem [4].

§1. FORMULATION OF THE PROBLEM. THE EQUATION OF MOTION

Now, lei’s determine forced oscillation of a rectangular thin plate, having thickness h, Young's
modulus E, specific mass M and lengths of edges b, ¢, which iz supported on four edges and lying
on the elastic foundation with two coeflicients as shown in Fig. 1.

Its motion is loaded by direction force, equally distributed g = g(t)
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The mechanical properties of material, when being straining, has been discribed by the model
of the standard linear body [5] (Fig. 2). Because of the state equation in operator is written by
the following form

o= FEe¢ (1.1)
E
b A E i E)e o
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Using the classical bending equaﬁion.of plate with regarding the initial strain and the non-
linear foundation, superseding the elastic modulus E by the analogous operator {1.2) into the
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expression: for the bending hardness
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we gel the equation’ of the problem
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ByDi 8y 8 1
- = 1.3
[ (Ef“Lat el )+‘EQ+atq]' (13)

The relevant homogeneous boundary conditions are as follow
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w’ =0, — +u2 2 = 0.
‘ y=0,¢ 3y2 - Ox? y=0,¢c

Here W = W (z, y,t) - sagging of cross-section, £ = —_Rz—, v - Poisson’s ratio, K|, Hj - coefficients
' aw )
1T ?

of the elastic foundation, f - elastic reaction, which is a non - linear function of (W, 3

V? - Laplace's operator.
Eh® E,

bi=qaa Ezf'

For simplicity, it is supposed that M =1, ¢ = egy sm"yt when the equatlon (L. 3) is possibly
written in the form

63W+532W a(
a3 at2 = 3t

D VAW Ko VAW + K W) +¢(D VAW~ K VW AKW) = eF (8,2, 4, W, ...),
(1.5)

where dﬁ/dt +, ¥ is a periodic function with period 27 relatively 5.

§2. CONSTRUCTION OF THE ASYMPTOTIC SOLUTION
When € = 0, we have the bouhdary problem

acw 32W

Tl + &0 EYD) (D1V4W Kz 2W+K1W) +E(D1V4W K2v2W+K1W) =0, 2 (2.1)

with the boundary co_nditions

: 2 2
w| =0 2 LAW g
z=0,6  + = a2 82 x=0,b (2.2)
- ‘ o W W | e
=0, Y — =
y=0,¢c 6y2 6:1:2 y=0,¢
The solution of this problem can be found in the form
Wo(x:yat) = (m y)T(t) ' (2‘3)
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Substitutig (2.3) into (2.1) and (2.2) we obtain

BT 4T a7
—— -+ ﬂ2D1 o+ E°D\T =0, (2.4)
dt? dt?
Kz Kl .
4 22 g2 2y 25
ViZ - D, Z+ DlZ Bz (2.5)
8%z a?
Z =0, +v Z =40,
2=0,b 812 3y2 =
) (2.6}
7 -0 8%z e 9%z _
y=0,¢ -0 ) ayz 83.72 y=0,¢c
It iz easy seen that the solution (2.3)‘ takes form -
Wy (5'31 y:t) = Z Ars Zr,s(zn y) cos érs + Z .D;s Zr,s(zn y)e—Et. (2.7)
ra=1 ) re=1
0% = DA%, Zrs(z,y) = sin :_'7;_3: sin ﬂ;}{, Prs = (ﬂ”t + 1,1’),.,), ‘ (2.8)

where A,,, D,,, ty, are positive constants determined from the initial conditions
wry2 .sn’ 2 i ST 2
T m((F) ()]}
{Dl[(b)+(c)] LAY AU R

It is supposed that when & = 0 there exists a periodic solution with frequency (1,

o= ([ O 0 [G) ()]ex) e

and there is a resonance relation

p—

2.9)

0f; = + &6, : (2.11)

§ is the detuning coefficient.
With these assumptions, we are going to find the partial solution of the boundary value
problem (1.4), (1.5) in the asymptotic form

Wiz, y,2) = aZii(z, y) cos ¢ + Uy (3, 9,0, 6,6) + £’V {z,y,a,¢,0} + ... (2.12)

where the functions Uy, Uy, ... are periodic with period 2w relatively ¢, 8, the quantities a, ¢ are
determined from the equations

f;‘ eAi(a, ) + & A (a,9) + €.

t

dyp (2.13)
e = (41 — ) + EBI{G ‘/’) +€?Bafa, ¥) + €°

By substituting (2.12) into the equation (1.5} and paying attention to {2.13), (1.4), in the better
first approximation we get '

Ls[Us] + £ Lo (U} + La (D1 VUL + K, VU, + Ky Un | + €(Dy VAU ~ K, VU + K Uy )+
+ (2002 Ay + 26002, By) cos é + (2603 A) — 20002, By) sin $] 2y, = Fy, (2.14)
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with the boundary conditions

Lo P PU
=05 | 9z2 Ay? lz=0p
’ L7 823;] (2.15)
U | =0, —> ! =0.
! y=0,c 3y2 Y dz? y=0,¢

The 6perators
5 3 3 \2
AR (ﬂnaz +155) 0 Baltil= (g + ) U

a \ 3
Ls[Uy] = (911 ) y Fi=F(8,2,9,aZ,,c058,...).

Er

To find the function I/}, we shall expand Fy and U; relatively the foundation functions {er {z, y}}

U= Usrs(a,$,0)Z.,(z,v), (2.16)
Fi =3 Firu(a,6,8) 20 (5,9), (2.17)

b e b e
where Fy,, ffFlz,-_.,d:l::a,’y/ffZ'rza dxdy are defined, still U;,, need be determined. Writing U/} in
0

0 Do
the form (2.16), the boundary conditions {2.15) are selves satisfied.
Putting (2.16), (2.17) into the equation (2.14} and then comparing the coeflicients of the
functions Z,,(z, y}, we have the following equations for determining Uy,.,, 41, By

Ls[Utia] + €La[Ura] + Q3 Ly U] + €02, U1y = Fipa+
-+ (2”?1‘41 -+ 2&001181) €os QS + (260111‘11 - 2&“?131) sin (}‘5,_ . (218)
L3IU1!'3§ =+ éLZ[Ulrs] + ﬂ§1L1{U1ul + EnflUlrs = F1r,- (219)
(r,e=1,2,...,r=3s5%#1)

Now, we first expand Fy,, and Uj,, in the Fourier series

Fy,, = ZF {a)e(ntmel  (2.20)
Uiy = Z ULl (@) nr+me). (2:21)
2n 2
Here F72 . = o /[Fl _‘{"9+m¢}d9d¢ are known, yet UT; . need be determined.
0

Suppose that U111 does not contain cos ¢, sin @, putting the expressions (2.20) and (2.21) into
the equation (2.18) and (2.19) and then compa.rmg the coefficients of the functlons g(notme) e

re(:elve
2 21'r

f fFlr,(a. ¢, a)e—ﬂn“qusda

Ulam(a) = , (222)

be
an?[€ +i(my; + n)] [ﬂ?s - (mﬂn + n'y)z] [ [ Z2dzdy
’ ) - ooQ
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Consequently the function Uy is determined by the following expression

oy
1
ot

b e . )
ffFlzne—t'(n9+m¢) dedydddd. Z, et (n0+md)
20

, (2.23)

-> %

. b e .
mm =1 452 (¢ + {(mflyq + n7)|[02, — (MmO +n7)2] [ [ 22 dzdy
: ‘ : 00

r,s=1," [0%, — (m1 +ny)? £ 0.

By comparing the coefficients of the function cos ¢, sin ¢ in {2.18), we get the following equa-
tional system o determine the quantities A;, B,

2m 2w

202, A +2¢ay, B, = i Pilad f [Flue_‘j("‘b""ﬂ) cos pdpdf = —G(a.r,yﬁ),
T ' (2.24)
260, A; — 2002, B; = e Ze""”fmee (#— ﬂsmqﬁdq&dﬂw—ﬂ[  $).
(&}
From here, we have
G G -0
A=~ (G + ¢H) B, = (& 1uH) (2.25)

nll(ﬂ%1+€z) , anil(nll+€2)

Thus, in the better first approximation the solution of the given boundary problem (2.12) is
determined. : :

§3. CONCRETE CASE

Suppoge that the right hand side of the equation (1.5) is of the form

Creel - R 5+ (5) 5 )

gz / Bz2 dy /) Iy ,
2 2
vl - = P(5) T+ (5) 51l
+ £go sin At + goy cos 4t — E—Di ;t ViW). 7 _ (3.1)
Using the above expressions, in the ﬁrst approximation we have '
W = asin %I- sin % cos{~yt + ¢). ' (3.2)

Here a, ¢ are determined from the following equational system

21%; = —-hf'ya — Py cos v,

- (3.3)
2375 = a(ﬂfl - '12) - Qa3 + hﬂfla + PO Si.fl 11’:
where
2 1[.2 2
D1E2[ _2] 16
do :
h= opy =0 | 3.4
Ei (03, + £2) Tt : (3:4)
6T Kyrnt ot :
Q= _3K1.+7(—b¥+c—4)]s. (3.5)



Vanishing the right part of the equation (3.3}, we obtain the stationary solution ao, %o related to
the frequency ~ and amplitude gg of the force ¢

(a0, 7?) = [eo(0¥]; - 72) —- Qas + hﬂ:ﬂcﬁo]2 - PZ+ h2€2”¥7205 =0, {3.6)

. P2
7 = —Qad+ (1+ WO 41/ 2 pegp (37)
0

The relation (3.7) is plotted in Fig. 3 for the c#se

Q=-1; 03, =1 A*=009 P2=0045 ¢>=2, 3.
In Fig. 4 for the case |

Q=+1; 0% =1 R*=009; PI=0.045; ¢* =2, 3.
In Fig. 5 for the case |

Q=0; 0}, =1; A*=0.09, PF=0.045 €& =72, 3

A ) ‘ ‘ 100’
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Fig. 8 ‘ Fig. 4 ‘

- To study the stability of stationary oscillations, we set into the equation (3.3) for a = ag + §a
and ¥ = yo + &y, where §a, §¢ are small perturbations. Neglecting the small quantities of higher
order, we receive following variational equations for ag # 0 .

27i[6a) = —hévyba + Pysinyod,
7 | (3.8)
2007 (69} = [(0F1 —77) - 3Qag + A2, ]6a + Po cos Yoby.

dt
The characteristic equation of (3.8) is
4702 + [(0F, —7%) — Qud + h0F ] [(0F; ~ %) —3Qaf + KDL, + A%y =0 (3.9)
From here it is easy to see that the condition for stability sté.tionary oscillation is
(03, — %) — Qaf + 01} [(0F, - 7°) —3Qad + A0Y,] + 476" > 0. (3.10)
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The inequality (3.10) will be satisfied, when

3 (a0, 72)

> 0. 3.11
2apdag ( )

In Fig. (3, 4), the solid curves correspond to stable states of vibration where the stability condition
(3.11)is beeing valid

lﬂbi

CONCLUSION 04

1. The equation of motion for a rectangular
thin plate on an elastic foundation with two coef-
ficients was set up. Its solution has been found by
means of an asymptotic method for high-order-
systems, further the stability condition of the sta-
tionary oscillation has been investigated.

2. Taking into account two coefficients of the
elastic foundation, the partial frequency increas-
es. Thus, the problem is changed on the peculiar-
ity.

3. From the presented Fig. 3, 4, 5 we can see
the parameters b, ¢, K1, K2 may be chosen so that
the system observed has hard or soft character. ’ Fig. 57
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DAO PONG CUONG BUC CUA BAN MONG CHU NHAT
TREN NEN DAN HOI HAI HE $6 NEN

Trong bii béo, bii jodn dao ddng cwdng birc cda bin mdng chi nhit trén ndn din hdi véi
hai hé s8 nén, dirge nghién ctu bing phwong phip tidm cin d8i v&i hé cip cao. DA chi ra cie djic
treng cda dao ddng ma cde tii lidu truwde A6 chwa d& cap dén. D& ding thiy ring ¢ thé chon cic
théng sd b, ¢, K;, K; 48 hé dao ddng ¢é diic trung cing, dic trung mém holc dao ddng tuyén
tinh. :
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