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§0. INTRODUCTION 

Parametric oscillation of the rectangular thin plate on the elastic foundation with two coeffi
cients1 when making mention of the creep of material, has been investigated in earlier publications 
(see for example [2, 3]). However; forced oscillation of the rectangular thin plate, to the author's 
knowledge, has not been hitherto examined. 

,This problem is studied here by means of an asymptotic method for high-order systems [1] 
and boundary value problem [4]. 

§1. FORMULATION OF THE PROBLEM. THE EQUATION OF MOTION 

Now, let's determine forced oscillation of a rectangular thin plate, having thickness h, Young's 
modulus E, specific mass M and lengths of edges b, c, which is supported on four edges and lying 
on the elastic foundation with two coefficients as shown in Fig. 1. 

Its motion is loaded by direction force, equally distributed q = q( t) 
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Fig. 1 Fig. 2 

The mechanical properties of material, when being straining, has been discribed by the model 
of the standard linear body [5] (Fig. 2). Because of the state equation in operator is written by 
the following form 

cr = Ee 

( Er) a 
E - Et+ K 1+ Ez at 

- ( K) a 1+-
E2 at 

(1.1) 

(1.2) 

Using the classical bending equation of pJate with regarding the initial strain and the non
linear foundation, superseding the elastic modulus E by the analogous operator (1.2) into the 
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expression for the bending hardnesS 

we ge_t _th-e equation· Of the problem 

The relevant homogeneous boundary conditions are as follow 

wl =O, 
XOFO,b 

a2W a2 W -+v-1 -o 8x2 8y2 z=O,b ~ ' 

a2W a2 w -+v-1 =0. 8y2 · 8x2 y=O,c 

{1.4) 

wl =O, 
y=O,c 

Here W = W(x, y, t) - sagging of cross-section, ~ = E 2
, v- Poisson's ratio, K 1 , K 2 - coefficients 

. K 

of the elastic ·foundation, f - elaStic reaction, which is a non - linear function of ( W, ~: , ... ) , 

\7 2 - Laplace's operator. 

D - E,h3 
1 

- 12{1- v 2 ) '. 

Ez 
~=-. 

K 

For simplicity, it is supposed that M = 1, q = eq0 sin1t, when the equation (1.3) is possibly 
written in the form · 

a3 W a 2 W a ,, 
at3 +~ atz +a

1
(D,'V 4W-Kz'V 2W+K,W)+e(D,'V4W-Kz'V 2W+K1W) =eF(B,x,y,W, ... ). 

{1.5) 
where dO/dt = 1, F is a periodic function with period 21r relatively fJ. 

§2. CONSTRUCTION OF THE ASYMPTOTIC SOLUTION 

When e = 0, we have. the boundary problem 

a
3
W azw a ( • 2 ) ( • 2 ) at3 +e at2 +at D,'V W-Kz'V W+K,W +e D,'V W-Kz'v W+K1W =0, {2.1) 

~ith the boundary conditions 

wl · =O 
z=O,b 

1
> 

{2.2) 

wl =O, 
y=O,c 

The solution of this problem can be found in the form 

Wo(x, y, t) = Z(x, y)T(t) {2.3) 
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Substituting (2.3) into (2.1) and (2.2) we obtain 

zl =O, 
x==O,b 

zl =o, 
y::::O,c 

a2
Z a2zl --+v-- -o 

8x2 By2 x=O,b - ' 

a2 z + "a2 z I = o. 
By2 Bx2 y=O,c 

It is easy seen that the solution (2.3) takes form 

00 

W0 (x, y, t) = L A,Z,,,(x, y) cos¢,+ L D,.Z,,,(x, y)e-<'-

• T'll"X S1ry 
Zrs(x, y) = sm -b- sin-,-, ¢>,,, = (fl,t + .;.,), 

where A,.11 , Dr,, 1/Jrll are positive constants determined from the initial conditions 

It is supposed that when e = 0 there exists a periodic solution with frequency flu 

and there is a resonance relation 

6 is the detuning coefficient. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

With these assumptions, we are going to find the partial solution of the boundary value 
problem (1.4), (1.5) in the asymptotic form 

W(x, y, z) = aZ11 (x, y) cos</>+ oU1 (x, y, a,</>, e)+ o2 U2 (x, y, a,</>, e)+ ... (2.12) 

where the functions U1 , U2 , ..• are periodic with period 21r relatively ljJ, B, the quantities a, tjJ are 
determined from the equations 

~: = eA,(a, .P) + •2 A2 (a,,P) + o3 
... , 

~~ = (On -1) + •B,(a, >/>)+ •2 B2(a, ,P) + e3 
... 

(2.13) 

By substituting (2.12) into the equation (1.5) and paying attention to (2.13), (1.4), in the better 
first approximation we get 

L3[U,] + ~L2]U,j + L,[D, V' 4 U, + K, V'2U, + K,U,] + e]D,V4 U1 - K2V2U1 + K1 U,j+ 

+ ](2fli1A, + 2eafl11B,J cos¢+' (2efl,A,- 2afli1B,) sin ~]Z, 1 = F1 , (2.14) 
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with the boundary condi"tions 

u,l = o, 
:t:=O,b 

u,l = o, 
y=O,c 

The operators 

F1 = F(8,x,y,aZ1 ,cos,P, ... ). 

To find the function U1 , we shall expand F1 and U1 relatively the foundation functions { Zr~ (x, y)} 

(2.16) 

r• 

F, = L F,, (a, ,P, O)Z, (x, y), (2.17) 

" 
b c b c 

where F1rs f f FlZrsdxdyj f f z;8 dxdy are defined, still U1rs need be determined. Writing U1 in 
0 0 0 0 

the form (2.16), the boundary conditions (2.15) are selves satisfied. 
Putting (2.16), (2.17) into the equation (2.14) and then comparing the coefficients of the 

functions Zr~(x, y), we have the following equations for determining U1rs, A1 , B 1 

L3[Un,J + ~L2[Un1J + fli 1L,[Ulll] + ~fli 1 Uu1 = Fm+ 
+ (2fli1A, + 2~afluB,) cos 4> + (2~fluAl- 2afli1B,) sin</>, 

L3[U,,] + ~L2[U,,] + fli1L,[U,,j + cfli1U,, = F,,. 
(r, s = 1, 2, ... , r = s # 1) 

Now, we first expand Flrs and Ulrs in the Fourier series 

F = ."' F" (a)ei(nO+=¢) lrs. ~, lnm l 

n,m 

U - '\' U" (a)ei(nO+=¢) 
lrs-~ lnm · 

211' 211' 

(2.18) 

(2.19} 

(2.20) 

(2.21) 

I 
I 
I 
f 
'· I 
i 
i 
l 

Here F[~m = 
4

: 2 ! ! Flrse-i(n&+m<P)dfJdc/J are known, yet U[:trn need be determined. ) 

0 0 

Suppose that U, 11 does not contain cos</>, sin¢>, putting the expressions (2.20} and (2.21) into 
the equation (2.18) and (2.19) and then comparing the coefficients of the functions ei(nO+m.P), we 
receive 

2lT2lT J J F,,(a,,P,8)e-i(nO+=¢)d,Pd8 

u;~m (a) = 0 0 b c 

411"2 [~+i(mflu +n-r)][n~,- (mflu +n--1} 2 ] f f Z';,dxdy 
0 0 
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l 
l 

l 
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Consequently the function U1 is detennined by the following expression 

2tr211' b c 
= I I I I F1 z,.,-i(n8+m~ldxdyd,PdB.Z,_e<(n8+m~) 

Ut = L 2:::: 0 0 0 0 b c ' (2.23) 

n,m r,•~l 4:>r2 [ e + i(mfln + n'J)][fl;', - (mfln + n1)2] I I Z?,dxdy 
0 0 

r, s = 1, [fl;, - (mfln + n1) 2] oft 0. 

By comparing the coefficients of the function cos</>, sin</> in (2.18), we get the following equa
tional system to determine the quantities .At, Bt 

211' 211' 

2flf,A, + 2eaflnBt = --4~2 L'ia.P I I Fn,,-i(~-·l cosq,d,PdB = -G(a,,P), 
d 0 0 . 

211' 2n-

2eflnAt- 2afli1B 1 =- 4~2 L ,<a.P I I Fn,,-<(~-•l sin ,Pd,PdB = -H(a, </>). 

From here, we have 

At= 

d 0 0 

(flnG + eH) 
fln(fli, + ~) ' 

(ea- flnH) 
B, -- . 

- afln(fli 1 + ~) 

(2.24) 

(2.25) 

Thus, in the better first approximation the solution of the given boundary problem (2.12) is 
determined. 

§3. CONCRETE CASE 

Suppose that the right hand side of the equation (1.5) is of the font) 

F = e{ _ K,W3 _ K2 [(aW)2B
2
W + (BW)2a2wl }+ 

2 Bx Bx2 By By2 

!!_{-KW3 _K2 [(BW)2B
2
W (BW)2B2W]} 

+ Bt 1 2 Bx Bx2 + By By2 + 
. E2 a(') + e q0 sm 1t + qo/ cos 1t - E, D, Bt '\! W . 

Using the above expressions, in the first approximation- we have 

W . 1rX • "Y ( ·'·) = asm -sm- cos 1t+ 'Y. 

. b ' 
Here a, 1/J are determined fiOm the following equational system 

where 

da 
21 dt = -he1a -Po cos .p, 

d.p (fl2 2) 3 h 2 P. . 2a"(dt = a n - 1 - Qa + fln a+ o sm ,P, 

[

1r2 1r2]2 
D1E2 -+-

h- b2 c2 
~ E,(fli, + ~) e, 

P. _ 16q0 
o - 1r2 e, 

6 [ K ("' "')] Q=- -3K,+-2 -+- e. 
64 2 b4 ,. 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 



! 

Vanishing the riglit part of the equation (3.3), we obtain the stationary solution ao, '!flo related to 
the frequency 1 and amplitude qo of the force q 

(3.6) 

12 = -Qa~ + (1 + h)nr, ± 
P.2 --%- h2f?12. 
ao 

(3. 7) 

The relation (3. 7) is plotted in Fig. 3 for the case 

Q= -1; nil= 1; h2 = 0.09; pg = 0.045; e =2, 3. 

In Fig. 4 for the case 

Q=+1; 0 2 -1· 11- ' h2 = 0.09; pg = 0.045; e =2, 3. 

In Fig. 5 for the case 

Q=O; nil= 1; h2 = 0.09; pg = 0.045; e =2, 3. 

lao I /a./ 

0,4 ---- 0.5 
~· 
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Fig. 9 Fig. 4 

To study the stability of stationary oscillations, we.set into the equation (3.3) for a= a0 + 5a 
and ,P = .Po+ 5,P, where 5a, 5,P are small perturbations. Neglecting the small quantities of higher 
order, we receive following variational equations for ao :f:. 0 

21..'!. (5a) = -hf16a +Po sin .Po5t/J, 
dt 

2ao1_c!_(5,P) = [(ni1 -12
) -3Qa6+hl1i1]5a+Pocos,Po5,P. 

dt 

The characteristic equ~tion of {3.8) is 

From here it is easy to see that the condition for stability stationary oscillation is 
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The inequality (3.10) will be satisfied, when 

8f(ao,'J2
) 

--':--'---':.:-'---'- > 0. 
2ao8ao 

(3.11) 

In Fig. (3, 4), the solid curves correspond to stable states of vibration where the stability condition 
(3.11)is beeing valid 

CONCLUSION 

1. The equation of motion for a rectangular 
thin plate on an elastic foundation With two coef
ficients was set up. Its solution has been found by 
means of an asymptotic method for high-order
systems, further the stability condition of the sta
tionary oscillation has been investigated. 

2. Taking into account two coefficients of the 
elastic foundation, the partial frequency increas
es. Thus, the problem is changed on the peculiar
ity. 

3. From the presented Fig. 3, 4, 5 we can see 
the parameters b, c, K:i, K2 may be chosen so that 
the system observed has hard or soft character. 

Ja,\ 
0.4--

a 
Fig. 5 
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DAO DQNG CU6'NG BUC C1JA BAN MONG CHU NH~T 
TREN NEN DAN Hi'>I HAI Hl); s6 NEN 

Trang bai b<io, b3.i toan dao d{mg cu·Ctng bll-c ella bin mdng chfr nh%t tren n~n din hbi v&:i 
hai h~ sg n'en, dlrgc nghit~n c-6-u bang phuang phclp ti~m c~n dgi v&i h~ c5:p cao. Di chi ra cac d~c 
tnrng cUa dao d9ng rna c<l.c ta.i li~u trrr&c d6 chrra d'e c~p Jg'n, D~ dang th5:y rang c6 th€ ch9n c<lc 
thOng s5 b, c, K1, K2 dg h~ dao dl;)ng c6 d~c tru·ng cfutg, d~c tru'Ilg· m'em ho~c dao dQng tuy~n 
tfnh. 
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