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- THE PROBLEM OF LONGITUDINAL SHOCK OF
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VISCO-ELASTIC RESISTANCE FORCE
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Based on the theory of one-dimensional wave together with Dalembert solution and Hertsz’s
law of deformation holds, in [1] and [2] we studied the problem of shock of two elastic bars with
free spherical end. In this paper, we continue to study the above problem when the second end of
the secend bar meets visco-elastic resistance force.

§1. FORMULATION OF THE PROBLEM

. The motion equation of the bars is:

a?U; o 32U,
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where 1 = 1,2; ay =,/ — - wave velocity.
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Boundary conditions:
At the shockend 1z = £ 23 = 45,
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At the free end, z; = 0,
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When the end of the second bar bear on the visco-elastic sole, we obtain:
' ’ 6U2 aUz
=0, —=-K{U;—A—=
zg =0; Fr. KUz 5 (1.5)

In this equation k;, A are elastic and viscid coefficients respectively. They are considered as
constants., A general solution of eq. {1.1} is of the D’Alembert form:

Uy = py(ajt — 2;) + (ot + x5)
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§2. DET’ERMINATI_ON OF WAVE FUNCTIONS OF BARS

Assume that the second bar is in the rest, the first bar centro-longitudinally moves and impacts
to the second one with velocity V;, based on [1] we get:
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va(z) =0

where —£; < z; < £;, with 7 = 1,2.
Accorélmg to the bounda.ry condition (1.3) we have:

A( o + ¢2) 1/3 (5 +¥2) =20} + B‘Pz + C}y . : (2.2) ‘
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Consider that Tz =T, + ¢qT) with = 1,2,3,...;0<qg< 1.
The wave functions pl(alt 71); ¥i{a1t +71); whlazt — 22) and Yh(eat+z2) with0 <t < T3
are determined ‘as follows: ' ' ’ :

“ At first period Ty (0 < t < T}), we have ©3 = 0 and 94 = 0, and from eq. (2.1) ¢} = ZVTI
; . ; 1
Notice that —= ¢2 = ¢, = y with z = ast + £, then eq. (2.2) can be written as follows:
1 Vl )
gy R -y 2.4
y= (01 +ey) -y _ (24)
Integrated eq. (2.4) we have:
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where Cq = C‘_c: . From eq. (2.3) we obtain:
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‘ Similarly [1] for the ** period of first bar we get:

‘ X (qp') =£+1§y ' ' - | (2.8)
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. Equation {2.7) can be solved by the finite differe:nce method. Value y; of first bar at the start of
period 7 is equal to that one at the end of period (z — 1). From eq. (2.3) we have:

e |
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Finall)'r in the interval iT;-: t <« Ty = 1T, + qT, we obtain:
| phlazt —£2) =0 .and of(aqzt - £2) = 0.
From eq. (2.2} we have 7
(48), = £ () 2(et), + O(w4),] (29)
where (50'1)1 = (ybi)h. .
Solving eq. (2.9) the wave functions (1,’)52)1 is determined. From eq. (2.3) we obtain:

(¥0), = (), + = (99), (2w)

T.
when t < —2% reflected wave ph{azt — z2) does not appear in the second bar.
T ‘ :
If ?2 < ¢t < T, then the wave function ph{azt — £2) = 0, but the wave function (st = x;) .

. - . .o T :
appears in the second bar. Determination of the wave function o} (azt — z2) with —23 <t < Tpis
done in the same way described by [1]. According t6 boundary condition mentioned in eq. (1.5},
the following cases are occured.

If 1 Aag # 0 then: .
‘ 1 + )\(12
1-
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‘P'z(ﬂzt) -1 ;\az pz(azt) = *I’z 2t) + 1 1;,2(0,215)

or
1+ 3\0«2

" 1 K, . '
P’z(agt — :l:g) - 1= a; qoz[a.gt - ) 1[)2( :Bz) + m‘lﬁz(azt - $2) (2.11)
with 0 < agt — 22 <_2£2. ’

Based on eq. (2.1) when 0 < agt — 2o < £ then @h(azt — 22) = 0. When €; < aot — 23 < 24,
then ¥4(azt — z3) is known and ¢g(azt — z3) is determined. Integrating eq. (2.11) with the

condition of @3 (£ — 0) = 0 we obtain:

(azt—z1)
palast — zp) = ¢~ Toreg (0rt=32) TR [1 + daz 2 y3(r) + Kl da(n)]dr  (219)
. 1 _ Aag
. E;,
If 1 — Aay = 0, we have:
i i 2
=) (th - ﬁg) = —-‘-"—1,1')'2(&2t — ﬁg] - 1/)2{021? - Iz) . (213)

Based on those mentloned above, we can determine the wave function ph{azt — 3} in the
second bar. So that we can détermine wave function ©{ayt — =), ¥} (ast + z1), ph{aat — 22} and

¢2(a2t + 25} at each of the sections of the bars in interval 0 < t < ==.

a

. In interval T5 < ¢t < 275 studying each of period Ty with 75 + (ff~ 1T <t < Ty +nTy. Let

{ ) 2n De7a wave function, that is determined in n*h period of first bar and the wave function itself

is also determined in the second period of second bar, where n = 1,2,...,1. At the first period of
first bar with Ty < t < Tp + T}, according boundary condition (1.3) we have:

( g) (992 21 + ;[2(@‘1)721 + B(ﬂog)n + C(¢;)21] ' [( - "0,2)21 + (#)'2)21]1/3
(2.14)

()0 = (1) + 21~ @)y + (#3),1] | e
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From condition (1.4)

ﬁfll(alt — &) = ¢y (ait — &) =P [ar(t — T1) + &, |
or : | .
(#h),, = ($1) 00 (2.16)

... -where (1,1’)'1)20 is the wave function ] (21t + £;) with (T, -Ty) <t < Ty, which was determined,
so that the wave function (), is also determined. According to (1.5) and (2.11) we have: -

4 K S s )\a
(P;)21 - T:;—%'(PZ)ZI 1— £ (¢2)21 — (¢2)11 (2.17)
If 1 — Aap % 0 then a solution of eq. (2.17) is: -
(azf»;fz} L4 2 x
X .
(), = e 2470 ,/ T [1 = o falr) + ;02 1/52(t)] dr (2.18)
£,
If 1 — day = 0 we have: , _
(2)ar = HE(W?) 1 (92)yy : (219}

So the wave function (1,0'2)21 = ((P:rz(agt - 22))21 is known from eq. {2.14) the function (1/)'2)21 Is
determined. Replacing this result into eq. (2.15} the wave function (;b'l)zl
similary we can determine the wave functions at the 5*” period of first bar. We have:

(99): = (68)a0 + (20600 + Blob) s + C(9),] - [(= 0h) s+ (98) )2

"can be found. Doing

(2.20)
J 1 7. ! .
( )2: (‘Pl) 2i ; [( - ‘102)2-7 + (1&2}2;] : {2.21)
(501)21; = (v‘);)Z(i—l} ’ i (2.22)
’ K 1 + )\ar. K _ C
("Pz)z.‘ T ;Ctg (503)—21’ = : ('4’)2) — j-\az ("'!bz)n . | (2'23)
If 1 — Aoz # 0 then solution of eq. (2.23) ist ' -
((p2)2|' = (@g(agt - EZ’))Q{ = l (2.24)
k N (azt—¢3) . ‘
_ l—_ﬁ‘;{a;t—ﬂ:] ] i -—nl.._iﬂqf . 14 Aa, K; )
T { i [lw)\a. valr) + J\az¢z(f)]d7-+02‘}

[ea+ez(i—1)T1]
where
| Czi = 2 [22 +az(i = )Ty — OJ e 1T ’“12 T=Ray (fa+aa(i=1)T]
If1- Aaz = 0 then ) ‘ . : .
(02)y: = ——(Wz)h. — {¥2),, (2.25)

So that the wave functions (1,[)2) and (¢1) are determined. Now we determme the wave funct.lons
is odd part of the second perlod of the second bar. From conditions (1.3}, (1 4) and (1.5} we have:

(¥5), = (e5), + [( Vs + Bleh), +G(¢z) I (=), + ()] - (2.29)

(#1), = (e), + ;2[( ~¢h)at (#3):] e
(@’1)2 = (¢i)2i B '
(w),— 7 :Kj\az (p2), = o Aaz T e, (2l t Kj\az (¥2), (2.28)
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If 1 — Aag 7 0 then

azt— &y

) { el {1+z\a2
1—AQ‘.2

K
1~ Aaz

(pa), = eTo WL(r) + gbg(r)]d'r " 02} (2.29)

£3+4aqiT)

where . .
Cy = pa(ly + aziTy — U)ewrﬁ"z_{e"i'a"“)

If1- Aay =0 then .
(p2),= —Ew&) = (¥2), (2.30)

So that the wave functions (1,&5) , and (1,[)'1) , are determined. If the shocks of two bare are still
not finished yet in second period of second bar, the next periods are studied is the same method
as above mentioned. Let ( )pn be the wave function in n*® period of first and in p** period of
second bar. In interval (p — )12+ (n—1)Ty <t < (p—1)T5 + nT; with n = 1,2,..., the problem
is studied as following:

From conditions (1.3) and (1.4) we have:

(¥), = () + 5 [2060) o+ BeR), + O8] - [~ ), + (42),,]°

(2.31)
1 .
(#1) 0 = (1) + —[(= #2), + (#0),,] o (2.32)
(1) o = (#1)ynmr) B (2.33)
By simillar way mentioned above, and from condition {1.5) we obtain:
I 1— Aas # 0 then
agf-—‘&; 1 /\ K
=1 (gqt-- .5 N + Aa -
(02),, = e rm 200 / [ () ()] dr Gy
az((2p~3) F+({n-1)T1]
(2.34)
where p > 2, and
I T
Con = w2[az(2p - 3)% +ay(n—1)Ty - 0] -e” s [“2(21"3}“}"‘“2("—1)?"1].‘
If 1 — Aaz = 0 then : ) o
((PZ)Pn = —K_l(wé)(p_l}n - (11[’2)(?__1}“ (235)

. So that the wave functions (Tb;)pn and (¢1)pn are determined. Now we are studying this problem in

final odd part of the p** period of the second bar, or {p—~1)To +iTy <t < (p—1)T3+iTy +qTy = pTo.
" Let ( ) be wave function determined in odd part of p** period of the second bar. From condition

(1.3) and (1.4) we have '

(#), = (), + S (206, + Blet), +OWa),] - [(~ ), + (), (239)
1

(- wt), + (¥2),] . (2.37)
(eh), = (1), | (2.38)




Doing similarly, from eq. (1.5) we get:
If 1 — Aaz # 0 then

‘azt—£y

= .1_:2717‘03“'#32) " - --iTK%—vr . i+ Aaz ; Kl .
.(?z)p = { / e T [1 g v2(7) + 7 g %bz(*r)] dr + Cp}
az|(2p—3) 2 +iT1] _
(2-39)
where r _ )
Cp = p2[az(2p - 3)53 tiagTy — 0] - ¢~ TR [ (20 Ty,
If 1 — Aap = O then o , .

(‘Pz)p = -—E("f’rz){p._l) - ('51’2)‘(1,_:1.) {2.40)

So that the wave functions (1,[)’2)1) and (gb'l)p are determined. Impact-pressing force F' between
two bars is determined by the following expression: . (E)pn = EQFQ[( — ‘Pi:a)pn + (1!)’2)1)"} and
(F)p = EaFp[( - r,o"z)P + (1/)5)’3] . Impact time determined by the following expression (F) on =0
or (F)p = 0. So we can determine the wave functions @ (ajt — z1), ¥i(a,t + #1), w5(azt — z2)

and 14 (ast + x2} at each section of two bars in impact time, and whence stress, velocity in each
section of bars can be found.

§3. CONCLUSION

In this paper the authors have studied the problem of longitudinal shock of two spherical end
elastic bars with visco-elastic resistance force. The wave function, stress, velocity in each section
of bars, impact-pressing force between two bars and impact time are given. The considered model
can be applied for pile driving on visco-elastic soil. )
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VA CHAM DQC CUA HAI THANH DAU HINH CAU
VOILUC CAN DAN NHOT

Trong bai bdo ndy cdc tic gia xét bai todn va cham doc cla hai thanh dan h8i d3u hinh ciu
v&i dan kia cida thanh thi hai gip lyc cdn dan nhét. DA xdc dinh dwee ham sbng, tir dé xic dinh
dwoc trng suit, vin tc tai moi thiét dién cda thanh, luc nén va cham gita hai thanh va thii gian
va cham. '




