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'§1. INTRODUCTION

In many theoretical studies it is convenient to transform Lagrange’s equations to the canonical
form where the canonical variables are introduced for substuting the Lagrange’s ones. It is a set
of 2n variables {g;,p;} (¢ = T,n) and in these variables the motion of a system is described by 2n
ordinary differential equations of the first order.

First, as known the canonical equations was established for a conservative holomonic me-
chanical system, Later a similar form was expended for a nonconservative mechanical system and
nextly, for a nonholonomic system (the form of canonical equations with undefined multipliers) [2,
3, 8]. However, the above mentioned estsblished form of canonical equations haven’t many practice
senses.

In the present work the author proposes a form of canonical equations for a constrained
mechanical system applying usefully for holonomic and nonholonomic systems. These equations
are constructed by the help of the principle of compatibility [1]. Such a form of canonical equations
will be used comfortable for studying dynamic of a multibody system.

§2 CANONICAL EQUATIONS FOR A CONSTRAINED
MECHANICAL SYSTEM

Let us consider a holonomic mechanical system. The position of the system is defined by
Lagrange’s coordinates g; (¢ = 1,n). There exists a force function U of active forces.

Hamilton reduced the differential equations of motion to a very significant form called the
Hamilton canonical equations.

For the aim of establishing canonical equations, instead of variables g; we introduced new
variables p; (i = 1, n}, that is:
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where T is the kinetic energy of the system which is assumed to be posiiive define quadratic form.
The variables p; are known as impulses and are conjugates of the Lagrange’s coordinates.
Since the highest order of form with respect to ¢; in the expression for the kinetic energy, the
transform form ¢; to p; is one-to-one.
- Let us now introduce the Hamiiton function:

(2.1)

1
H=> gpi—T-U=H{t,g,pi) (2.2)

i=1
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where the variables q‘ are expressed through the impulses p; by the help of the transformation
(2.1). By such a way the Hamilton function is the function of canonical variables {g;, p;} {* =1 1,7).
As known the squations of motion of the unceonstrained system can be written in the form

aH

G = T (t=1,n) (2.3)
=G =T (2.4)

where the group of equations (2.3) expresses the transformation of variables (2.1}, and the group
of equations {2.4) describes the motion of the unconstrained system.

Let us now consider the mechanical system subjected to the nonholonomic constraints of the
form ' '

Z boiGi +ba =0 {a=1,7 r<n) (2.5)

where b, = b, (t, g;); by == bu(t, @i} are known functions.
In taking account of the transformation (2.1), the equation {2.5) can be written in the following
form

D Bapi+ba=0 - {(2.8)

where

B, = Zbajaji ’ (2.7)
3=1

{{ais] is the inverse matrix of the matrix of inertia, which is n X n positive define symmetric matrix,
too.

Evidently, the equations {2.4) can’t describe the motion of the system with constraints (2.5).
or in the equivalent form (2.6).

To write the equations of motion of the system with constraints (2.5} or in the equivalent form
(2.6) we will apply the principle of compatibility [1].

Of course, the first group of equations (2.3} treated as a transformation of variables can be
keep in tact, and the second group of the equations of motion must be substituted by the following
equations

aH
dg;

Di = — +R{ (2.8)

where R are the reactions of the constraints (2.5} or in the equivalent form (2.6), which by the
- principle of compatibility must satisfy the algebraic equations

> BaiRi+ By =0 (2.9)
fex] .
where
i aH
-y Byi— 2.10
§ 7o (2.10)

which are the functions of canonical variables {g;,2,} {s =17, n)..
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As a result we obtain (2n+r) equablons (2.3), (2.7) and {2.8} which contain 3n unknowns g;,

i Because of r < n, the number of obtalned equations is smaller than the one of unknowns,
_ therefore the problem is underfined. The above mentioned nondeterminate is caused by the sub-

gtance. of the considered constraints.

This means that it is necessary to know the information

" about the substance of considered constraints. In connection with this, let us consider a class of
ideal constraints. Following [1f, the condition. of 1deahty of the constraints (2.5) can be written in

the form

idgﬂi =0
i=1

(v=1,k k=n—r)

(2.11)

where d,; are the coefficients in the expressions of generalized accelerations §; when they are

represented through independent accelerations by the present of constraints (2.5).

By such a way we obtain 3n equations (2.3), (2.4), {2.9) and {2.11) of 3n unknowns g¢;, p;, R;

(f, =T1,n}.

_ In general, the set of above mentioned equations will give the unique solution {g;(t), p:{t), R(t)}
which describe the motion of the considered system together with the reactlons of constraints {2.5)
acting upon the system.
For the aim of applying the numerical methods to solve the problem of dynamics of multibody
system, let us introduce their matrix notations, for example, ¢ is the notations of the 1 x n line
matrix, but g - its transform matrix. -

We have then

where A is the i inverse matrix of the matrix of in

matrix too.

by istherxn matrix of the elements of the form []bm-" Besides

is the n % 1 matrix and

Vis the & x n matrix, the elements of which are determined by identiiies

caal s

T
N
2... Bo]|T — the matrix of constaint reactions

q=Ap

8H
=_——" +R
P Bg + &
BR+B =0
DE=0

— Bu

D = [ldus]]

é1 D=0

45

(2.9)
(2.8")

(2.9')
(2.11)

inertia, which is the n X n positive define symmetric

(2.12)

(2.13)

(2.14)

(2.15)



. §3. EXAMPLES

Example 1. Two ponderable partides M, and M3 of identical mass m = 1 are jointed by
a rod of constant lenght £.and neglegibly small mass. The system s constrained to move in the
horizontal plane and only in such manner that the velocity of midpoint of the rod is directed along
it. Write the canonical equations of the system. o

Let .z, y1 and z3, yo~be the coordinates of the partides M and Ms>. We introduce the
following generalized coordinates g1 = zy + @0; o = T3 — X9 gz = Y1 + ¥2; 94 = Y1 — Ya.

It is easy to see that the constraint equations may be written as follows

gaga — qagy = 0

. 2.15
_ G +ai— =0 (21

The last equations can be written in the equivalent form
9292 + 9494 = 0 (2-16)
The kinetic energy of the system will be now ' '
T= (il +d+d+4) | (2.17)

The matrix of inertia is the unique matrix. Therefore its inverse matrlx is the anigue one, too.
It is easy to calculate the following matrices

0 g2 0 g4
B =
o “ - 0 g O
_ “ 1 0 g4/ga 0
E e .
0 1 0 ‘"‘92/!?4
BOl =1 i+ pl

Pa2P3 — D4P1

Equations of motion will be

g1 =p1; G2=p2; G3=P3; da=ps
pr=Ry; p2=Ry pa=Rs ps=Ry
q2Ry + quRs +p3 +p5 = 0

- fI4Ri + q2R3 + paps —pap1 =0

R1+ Rs-w{) R,— LR, =0
g4

Example 2 [8]. Let us consider the motion of a platform in an inclined plane (Fig. 1}. We
reduce. it to fixed rectangular coordinates OXY Z. Assume that z, y are the coordinates of the
“contact point, a - the distance from the contact point to the mass centre of the platform. The
wheel is treated as a thin knife.

The kinetic energy and potentia.l function are

T §[$2 +9* + p26% + 2ap(y cos p — sin p)]
U=—mgzsina - ‘

where p is the radius of inertia of the platform with respect to the mass centre.
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Figure 1

The constraint equations can be written as follows

zhgp -y =10
The matrix of inertiz has the form
m 0. —masin
A= 0 m ma cos
—masing macosp mp?

The inverse matrix of the matrix of inertia will be

1 p?—a?coslyp —alsinpcose asing
——s——— | —a®sinpcosp  p? —a® sin®p . —acosp
m{p? — a?) asin - 1

P Gcos @ 7

i

Besides, we have
B=p?sine —picosp acospl
B° = ||(a® sin @ cos p(pZ - p7) — a® cos 2ppepy + @ C0s PPy + asin Epyp, )|

_ i1 tge O
_D”\_HO_ 0 1

Equations {2.3’) and (2.8"} take the form

. 1 _ .

T = ——_——m(pz o) [(p2 —a? .cosz ©)pe — a sin p cos Ppy +asin @pv]

AU N 24 2 _ 2.2 '
= — 4 — —

y i — a7 ! — a’sinpcos Pa (? — a®sin® p)p, — acos pp, |

1

= W[asm ©px —- @ CO8 PPy +p.p]
Pz = By
Py = Ry

'__#12-2(2_2 2 2 _ aain . R
Pp. = 20.. s 2¢(px py)—i»a COS 2PPx Py — R COS PrPyp — ASIM PPyP, + Ly
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Equations (2.9 and (‘27.11’) are now

P2 sinpR; — p?cos pRy, + acos pR, — a® cos psin p(p2 — p2)—
—~ a’cos 20pspy + acos ppop, +asin ppyﬁp =0
R+ Rytgp=0; R,=0

§4. CONCLUSION

Equations (2.3") (2.8’) (2.9’} and {2.11’) are a set of algebraic - differential equations which
permit to determine simultaneously the motion of the system and the constraint reactions subjected
upon the system. We have obtained ¢two of important results

To obtain the form of canonical equations for constrained mechanical systems.

The canonical equations are written in the matrix notation, which are convenient for applying
methods of computation mechanics to solve problemns of multibody system dynamics.

This publication is completed with financial support. from the National Basic Research Pro-
gram in Natural Sciences.
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PHUONG TRINH CHINH -Tic CHO CO HE CHJU LIEN KET

Trong cbng trinh 43 xa,y dung hé phwoeng trinh chinh tic cho mat co hé chiu lin két. Piy 1a
hé 2n phuong trinh dai s8 cip mét. D3 nhin dwoc 2 k&t qud quan trong:

Nhin dwgc mot dang cic phu'o'ng trinh chinh tic cho cdc co hé chiu Lién két.

Céc phirong trinh dwgce vigt & dang ma trin rit thich hop cho viéc 4p dung cdc phuong phap
cdia co hoc tinh todn 38 glfu cdc bai todn ddng lue hoc hé nhidu vit.
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