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SENSITIVITY ANALYSIS FOR A PROBLEM 
OF OPTIMAL STRUCTURE DESIGN 

' 
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Institute of Mechanics, NCNST of Vietnam 

SU1vfMARY. Ori the basis of theory of structure sensitivity analysis, the gradient"-pro­
jection method and the finite element method, a detailed and effective algorithm of de­

termination of the'sensitivity-vector fa! the optimal structure design problem is proposed. 
Numerical results illustrating the program corresponding to this algorithm have been given 

for some plane frames. 

§1. PROBLEM OF OPTIMAL STRUCTURE DESIGN 

The problem of optimal elastic structure design here is formulated as follows [1}: 
Determine design Variable vector bE Rk to minimize objective function 1/Jo(z, e, b) (it can be 

the weight of the, structure) satisfying the following state equations and function constraints: 
1. The equ<J.tions of equilibrium for a structure (static and dynamic): 

2. Function constraints: 

h(z,b) = 0. and 

K(b)y = ~M(b)y 

t/>j(z, ~.b) 2: 0, j = I, m 

(1.1) 

(they can be constraints on displacement,-stress or natural frequency and design variables). where 
K(b) -stiffness matrix of the system. 
M(b) -mass matrix 
z E Rn - displacement· vector 
€ E Rn - natural frequency of vibration of system 
y E Rn - eigenvector 
z, e, y all they are state variables. 
Note that, if the structure is a truss-system of m·e]ements, then the weight function has the 

form: 

where 

m 

.Po= L e,L,A, 
i=l 

L; - the length of i-th truss element 
Ai - its cross area 
ei - material density of i-element 

The design variables b (they tah b~ L, or Ai) are chosen and changed by a designer, but 
state variables z, e, y or stresses of a structure depend on equilibrium conditions and correlations 
between displacements and stresses. Therefore a designer can not change state .variables dir~dly. 
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There are many methods for solving the above problem [2, 3, 4]. For almost iterative optimal 
structure methods it requires to know gradient values, which are received in result of sensitivity 
analysis. The essence of this analysis is presented in the following section. 

§2. SENSITIVITY ANALYSIS OF STRUCTURE 

Here the influence of project variation is investigated by approximating nonlinear function of 
the problem with linear expression corresponding to considering variables. 

The change of the objective function .Po(z, ~.b) and of the function constrains .p,.(z, ~.b), J = 
1, m corresponding to small ch~nges of variables can be w:fitten in the form: 

(2.1) 

Because equation of equilibrimn h(zo, b0 ) = 0 is also true in the case of increasing displacement z 
and design variable b with a small value, we have: 

h(zo + 5z,b0 + 5b) = 0 

it follows: 
'Bh(z0 , bo), Bh(zo, bo) 'b 

uz + u = 0 az ab (2.2) 

This equation can be considered as the condition to determine 6z as a function of Db. Then with 
the notation . 

equation (2.2) has the form: 

J = Bho(zo,bo) 
az 

Bh 
J5z = --· 5b 

Bb 

On the other hand, if we consider column vectors ,\i as a solution of conjugate equation: 

0Si S m 

from (2.3) and (2.4) we have a relation between 5b and 5z: 

Similarly, a variation 5e depends on 5b [1] as follows: 

where 

e<T = [:b {YT K(b)y}- e:b {YT M(b)y}]5b 

Substituting (2.5) and (2.6) into (2.1) we get equations 

5.J>o = £0T bb 

5.P = eT 5b 
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where vector lo and eolurnn-vector it of matrix i at point zo, eo, bo according to formula 

(2. 7) 

Component~ of the vector ~ are ·called sensitivity coefficients of the constraint-function 1/Ji corre­
sp-onding to design variable b. These vectors give derivatives of the object function and constraint­
function (~· is derivative of 1/Ji with respect to j-th design variable). 

These components e!_. are needed for designers beCause they present the influence of design 
' ) 

variable changes on object function or constraint-function. H ~· > 0 then incre·asing bi follows 

increasing ..Pi· H ~- < 0 then increasing bi follows dec,reasing 1/Ji. Moreover, order of a value -of the 

different sensitivity coefficients z;. informs designer that what design variable has great or small 
influence on '-Pi· 

Remark that an elastic structure, best of all, is simulated by the finite element methods. When 
equation ( L 1) has the linear form: · 

h(b,z) = K(b)z- S(b) = 0 

S(b)- matrix of external loads and the Jacobian of this equation is expressed as: 

ah 
J=-=K 

az 

Because K is a symmetric matrix, equation (2.4) takes the form:_ 

K>! = a.p[ 
az 

(2,8) 

(2,9) 

This equation has the same form as the equation (2.8) does. The difficulty in obtaining e' 
lies in derivation ah(b,z)jab or (aK(b)z- S(b))jab. In this work it is formed by derivation with 
respect to design variables for each element stiffness matrix and sum the results by an algorithm 
of the finite element method, 

§3. CONNECTION BETWEEN SENSITIVITY VECTOR l 
AND SOLUTION OF OPTIMAL PROBLEM 

Now the optimal problem (L1) can be reduced to the following problem [1[: To find 5b for 
minimum 6,P0 = f!JT 6b, satisfying conditions: 

L 5bTW5b:::; {3 2 , where f3- small parameter; W- weight matrix 
2. linear constraint 

a·'· { - b.·'· , o{;=-"ob=Fob=- "''' 
ab . :::; b.¢;, 

when j = 1, ... , n 

when j > n; ,P;(bo) 2: -e 

where tl.,Pj = -tfi(bo) is the limit of the change of the constraint-functions fore-active constraint 
flJ. On the basic theorem of Kuna~ake-about the existence of a solution of nonlinear programming 

. problems it is shown in [lJ that there exists a vector-multiplier J.L ~nd a scalar,')' 2: 0 satisfying the 
following equations: 

lo+lp.+2-yW5b=O 
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From these equations~ have formulae determining Db, J1. 1 1 by the sensitivity vector, 

where 

1 
5b = --5b1 + 5b2 

2 

Jlt and P..2 are solutions of the equations 

where 

(3.1) 

If all P..i corresponding to ,Pi(bo) - are positive when bo is a solution satisfying Kunatake 
condition. If exist some 

1
J.l.i < 0 corresponding to ,Pi(bo} ;,;::: -E fori > 0, then one can receive a 

better solution by excluding the corresponding constraint ,Pi(b) and it is necessary to calculate 
l, M.p.p 0 , MvJ'I/J, once more and the process will be stopped when all J.Li > 0 and Ob will be calculated 
by (3.1). . 

Thus, clearly that the sensitivity vector of the constraint-functions 1J'i corresponding to design 
variables has important role in calculating variables 6b in the optimum design of the structures. 

§4. ALGORITHM FOR DETERMINATION OF SENSITIVITY VECTORS 
NUMERICAL EXAMPLES AND CONCLUSION 

As the result of above investigation, the effective algorithm for obtaining sensitivity vectors is 
presented, and consists of the following steps: 

1. Chose engineering design variable bo for project. 
2. Solve equilibrium equations: 

h(z) = K(b)z- S(b) = 0 or: 

K(b)y =" EM(b)y, 

finding z, y, €, corresponding tO b0 • 

3. Check if the obtairied values z,y, €, satisfy the conditions of the constraints. If they don't, 
then establish corresponding constraint-function vector [,P]. 

4. Solve equation K>., = a,pf jaz to find>.,. 
5. Calculate derivatives ahjab, a,p,jab, a,p;ja~ and £; corresponding to constraint 1/J; by 

formula (8). Two· numerical examples are given, which illustrate the algorithm and its effectiveness. 

Example 1. Consider the truss system of ten elements (see<fig. 1.) with the parameters: 
E = 107 Njm2 , e = O.tN/m3 , the critical displacement z ;=2m, critical stress a, = ±25.103N/m2 

This system is subjected to external loads : P1 = 105 N, P2 = 105 N, P3 = 15.103 N, P4 = 13.103 N. 
The results (see table 1) show that the sensitivity vectors f 11 tz are corresponding to displace­

ments in the ~irection of the axis Oy at the points 1 and 4 (their values are greater than critical 
displacements). Vectors i 3 ,l41 ls are corresponding to the stresses in the elements 5, 6, 7 (there 
the stresses are greater than critical value}. The column vector-[3 shows that, in order t.o decrease 
the stress in the element 5 one must increase the cross areas of the elements 3· 7, 9 and decrease 
the cross area of the element 1,- 21 8 and 10. 
, Note that, if the external loads P3 and P4 are absent, our results for sensitivity vector!El coincide 
with the results given in {lJ, that shows exactness of the program. 
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Table 1 

'·"-'' 
N Area !!, iz i3 t. is 

1 28.8 -.00673 -.00069 .00974 -.00200 -.00111 
2 .2 -.08581 .01289 .05038 .26849 .02056 
3 23.6 -.00525 -.00357 -.01143 .00235 .00130 
4 15.4 -.00454 -.00018 -.00071 -.00379 -.00029 
5 .2 -.05090 -.59515 -1.32544 .47776 -.94925 
6 .2 -.23030 -.12960 -.50639 .94390 -.20671 
7 3.6 -.06593 -.27170 -.87009 .17876 -.45728 
8 21.0 -.00862 -.00199 .02800 -.00575 -.00318 
9 21.8 -.00641 -.00026 -.00100 -.00535 -.00041 

10 .2 -.24270 .03647 .14249 .75941 .05816 

Example 2. Co.nSide~ the_ tr-uss .system of 29 elements (see fig. 2.) with the parameters: 
E = 107 N fm2 , e = 0.1Njm3 , the· .t.ritical dispiaceme·nt z = 0.026m,_ the- ~ritical- stress ac = 
26.103 Njm2 • This system is subjected t'oextern<i!Joads: ·p, = 500N, Pz = 1000N,P3 = 1200N, 
P4 = 1400N, Ps ~ 1600N. . ... · 

The results {see table 2) show that sensitivity vectors it are corresponding to th'l:~ displacement 
in the direction of the axis Ox at the points 16 (these values are greater than critical displacement). 
The ve'ctors l 2 , l 3 , l 4 , 4, are corresponding to the s_tresses in the elements 1, 4, 5, 10 (there stresses 
are greater than critical value). Column vector /.2 shows that, in order to decrease the stress in 
element 1 one must increase the cross areas of the elements 1, 3~5, 9, 10, 11, 13, 14, 16, 19, 20 and 
decrease the ·cross area of the element 2, 6. 

In the tables 1 and 2 N is an index of the beam, the second column is the cross area of the 
·beam. To decrease the stress or displacement of the beam corresponding f.;. need to be interested 
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in the value of the column v.ector component 4,. If the value of vector component 4 is negative 
then the cross area of corresponding beam must be increased. If the value of vector component ~ 
is positive then cross area of corresponding beam must be decreased. The oder of value 4 in the 
tables informs us about the change level of the cross area. 

Table 2 

N Area t, lz t3 t.. £5 

1 .250 .62782 -1.00190 .51501 -.00001 .00001 
2 .150 .10769 .76114 .76115 .00000 .00000 
3 .150 .10333 -.73033 -.73032 .00000 .00000 
4 .250 .62242 -.51058 .95028 -.00001 .00001 
5 .250 .36414 -.00001 .00001 .13223 .00001 
6 .200 .01757 .12316 .12316 .00000 .00000 
7 .150 .08749 .00000 .00000 .00000 .00000 
8 .150 .08749 .00000 .00000 .00000 .00000 
9 .200 .02166 -.15181 -.15181 .00000 .00000 

10 .250 .36414 -.00001 .00001 -.00001 .13222 

11 .250 .41645 -.00001 .00001 -.00001 .00001 
12 .200 .01084 .00000 .00000 .00000 .00000 
13 .150 .23867 -.00001 .00001 -,00001 .00001 
14 .150 .23867 -.00001 .00001 -.00001 .00001 
15 .200 .02073 .00000 .00000 .00000 .00000 
16 .250 .41645 -.00001 .00001 -.00001 .00001 
17 .250 .12610 .00000 .00000 .00000 .00000 
18 .200 .00639 .00000 .0000 .00000 .00000 
19 .150 .16181 -.00001 .00000 .00000 .00000 
20 .150 .16181 -.00001 .00000 .00000 .00000 

21 .200 .01836 .00000 .00000 .00000 .00000 
22 .250 .12610 .00000 .00000 .00000 .00000 
23 .250 .02015 .00000 .00000 .00000 .00000 
24 .200 .00006 .00000 .00000 .00000 .00000 
25 .150 .08606 .00000 .00000 .00000 .00000 
26 .150 .08606 .00000 .00000 .00000 .00000 
27 .200 .01398 .00000 .00000 .00000 .00000 
28 .250 .02015 .00000 .00000 .00000 .00000 
29 .200 .01591 .00000 .00000 .00000 .00000 

CONCLUSION 

Sensitivity analysis have a great role in solving the optimal design _problem. With the help 
of above mentioned algorithm and program we obtain the sensitivity vectors for solving optimal 
design problems. 

The author would like to thank Doctor Do Son for posing the problem and engineer Duong 
Thi Dung for working out calculat-ing program. 

This Publication is completed with linacial support from the National Basis Research Program 
in Natural Sciences. 
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PHAN TfcH Do NHA Y cAM 
' , . ~. "' , 

TRONG BAI TOAN THIET KE TOI UU 

Tren ca sO. ly thuye't ph!in t!ch di) nh~y c!un cda dtu true, ph11ang phap chi~u gradient va 
phU'(Yng phap ph1in ttl· hiru -h<;~-n, m9t thu~t t'oan chi ti€'t va hi~u quid~ xclc dinh v~c ta nh~y cam 
trong b3.i toin thie't ke' t5i U'U dl drrgc du-a ra. Cic ke't qu.i sO minh h9a cho c:;hu·ang trinh ttrcmg 
U:-ng v&i thu~t toa.n tren da du-gc tht,rc hi~n v6i mQt sO dan ph!ng. 
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