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SENSITIVITY ANALYSIS FOR A PROBLEM
OF OPTIMAL STRUCTURE DESIGN

NGO HUONG NHU
Institute of Mechanics, NCNST of Vietnam

SUMMARY. On the bagis of theory of structure sensitivity analysis, the gradient-pro-
jection method and the finite element method, a detailed and effective algorithm of de-
termination of the sensitivity-vector for the optimal structure design problem is proposed.
Numerical results illustrating the program corresponding to this algorithm have been given
for aome plane frames.

§1. PROBLEM OF OPTIMAL STRIJCTURE DESIGN

The problem of optimal elastic structure design here is formulated as follows [1]:

Determine design variable vector # € R¥ to minimize objective function ¥y (z, £, &) (it can be
‘the weight of the structure) satisfying the following state equations and function constraints:

1. The equations of equilibrium for a structure (static and dynamic):

h(z,b) =0  and

K(b)y = EM(B)y (1

2. Function constraints: .
Pi(2,6,6) 20, j=1m

{they can be constraints on displacement, stress or natural frequency and design variables). where
K (b) - stiffness matrix of the system.
M(?) - mass matrix
z € R" - displacement vector
& € R™ - natural frequency of vibration of system
¥ € R" - eigenvector
z, £,y all they are state variables,
Note that, if the structure is a truss-system of m’ elements then the weight functlon has the

form: .
Yo=Y eiliAi
i=1
where L; - the length of :-th truss element

A; - its cross area
0 - material density of i-element _
The design variables b {they can be L; or A;) are chosen and changed by a designer, but
state variables z, £,y or stresses of a structure depend on equilibrium conditions and correlations
between displacements and stresses. Therefore a designer can not change state variables directly.
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There are many methods for solving the above probiem |2, 3, 4]. For almost iterative optimal
structure methods it requires to know gradient values, which are received in result of sensitivity
analysis. The essence of this analysis is presented in the following section.

§2. SENSITIVITY ANALYSIS OF STRUCTURE

Here the influence of project variation is investigated by approximating nonlinear function of
the problem with linear expression corresponding to considering variables,
' The change of the objective function vo{z, £,) and of the function constrains #,(z,£,b}, 7=
1, m corresponding to small changes of variables can be written in the form:

. a
B1alz0, £, kol = _1’—%{20, o, boléz + %1%9[20: £o, bol6€ + %}[;—0[20, £0.b0]68,

oz
ki)
ab

(2.1)
020, o, bl = 222 {20, G ol s+ 52150 o, ol6E o+ oo, € ol

Because equation of equilibrium h{z, bg) = 0 is also true in the case of increasing displacement z
and design variable b with a small value, we have:

h{zp + éz,bg + 88} = 0

it follows: Bh(z0,bo) Sh(z0, bo)
Z05% 20, 0g
& §6=0
92 it gy O
This equation can be considered as the condition to determine §z as a function of 65. Then with
the notation

(2.2)

J — ahg (Zo, bg}
' . dz
equation {2.2) has the form: ,
: 9h .
Jbz = ~ 5b . : .(2,3)

On the other hand, if we consider column vectors A* as a solution of conjugate equation:

- -
JTA":%’%’—_ 0<i<m C (2.4)

from (2.3) and (2.4) ;ve have & relation between &b and 6z

rohsy - Py,

i
A ab Oz

(25)
Similarly, a variation §§ depends on &b [1] as follows:

§¢=eT5h

\;rhere a : 3
87 = [ {(yTE )y} — 5, (" M(b)v}]6b : (2.6)
Substituting (2.5) and (2.6) into (2.1} we get equations

§1pg = £°T 5b
byp = T §b

37



where vector £ and eolumn-vector & of matrix £ at point 2o, £o, bo according to formula
S

; oyl anT Bt,b, i
="t - — X4 2.7)

3b b e " (27} ¢
Components of the vector £ are called sensitivity coefficients of the constraint-function ; corre-
sponding to design variable b. These vectors give derivatives of the object function and constraint-
function (f_‘T is derivative of 4, with respect to j-th design variable). :

These components E; are needed for designers because they present the influence of design

variable changes on object function or constraint-function. If 2‘ > 0 then increasing b; follows

v

increasing ;. If E‘ < 0 then increasing b; follows decreasing ;. Moreover, order of a value of the

different Sen31t.1v1t.y coeflicients l‘ informs designer tha.t; what design variable has great or small :
influence on ;. *

Remark that an elastic structure, best of all, is simulated by the finite element methods. When
eguation (1.1} has the linear form: -

h{b,z) = K(b)z — S(b) = 0 (2.8)

S(b) - matrix of external loads and the Jacobian of this equafion is expressed as:

J""’-———:
dz K

Because K is a symmetric matrix, equation (2.4) takes the form:

ayy

KX = dz

(2.9)

This equation has the same form as the equation (2.8) does. The difficulty in obtaining £
lies in derivation 8h(b,z)/3b or (3K (b)z — S(b))/3b. In this work it is formed by derivation with
respect to design variables for each element stiffness matrix and sum the results by an algorithm
of the finite element method.

§3. CONNECTION BETWEEN SENSITIVITY VECTOR ¢
AND SOLUTION OF OPTIMAL PROBLEM

Now the optimal problem (1.1} can be reduced to the following problem [1]: To find 64 for
minimum 8y, = 97 §b, satisfying conditions:

1. 6bTW6b < A%, where f - small parameter; W - weight matrix

2. linear constraint

1!)“' 3‘1’ Eb — £T6b { = Ay, when 3: =1,.,n
< A'ibj: when J>n; ‘nbj'(bﬂ) = —€

where Ay; = —;(bo) is the limit of the change of the constraint-functions for e-active constraint
[1). On the basic theorem of Kunatake-about the existence of 2 solution of nonlinear programming
.preblems it is shown in [1] that there exists a vector-multlpher p and a scalar.y > 0 satisfying the
following equations:
b+l +29WEb =0
il —Agy) =0 i>n
Y(85TW§h — p?) =
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From these equations we have formulae determining b, i, v by the sensitivity vector,
1
6b=—5§b1+6b2 (3.1)

- where
§by = Wty + sy}, fby = —W ™ ey,

py and gy are solutions of the equations

My = ~Mygy,  Myypz = —0%

where . .
Miﬁﬁ" = ETW—IE, M¢¢0'= ETW_leg.

If all 4; corresponding to ¥;(bo) - are positive when by is a solution satisfying Kunatake
condition. If exist some u; < 0 corresponding to ¥:(bs) = —¢ for i > 0, then one can receive a
better solution by excluding the corresponding constraint v;(b) and it is necessary to calculate
2, My, , Myy, once more and the process will be stopped when all i; > 0 and §b will be calculated
by (3.1). _

Thus, clearly that the sensitivity vector of the constraint-functions ¥; corresponding to design
variables has important role in calculating variables §b in the optimum design of the structures.

§4. ALGORITHM FOR DETERMINATION OF SENSITIVITY VECTORS
NUMERICAL EXAMPLES AND CONCLUSION

As the result of above investigation, the effective algorithm for obtaining sensitivity vectors is’
presented, and consists of the following steps:

1. Chose engineering design variable bg for prOJect

2. Solve equilibrium equations:

h{z) = K(b)z — S(b) =0 or :
K(bly = EM(b)y,

finding z, y, £, corresponding to bg.

3. Check if the obtained values z,y, £, satisfy the conditions of the constraints. If they don t,
then establish corresponding constraint-function vector [y

4. Solve equation KX; = 347 /dz to find X;.

5. Calculate derivatives. 3h/8b, 84;/8b, 8v;/0¢ and {; corresponding to comstraint y; by
formula (8). Two numerical examples are given, which illustrate the algorithm and its eflectiveness.

Example 1. Consider the truss system of ten elements {see fig. 1.) with the parameters:
E =10"N/m?, g = 0.1N/m?, the critical displacement z = 2m, critical stress o = £25.103N/m?2.
This system is subjected $o external loads: P, = 10°N, Py = 10°N, P; = 15.10°N, P, = 13.10°N.
‘ The results {see table 1} show that the sensitivity vectors £;, £, are corresponding to displace-
ments in the direction of the axis Oy at the points 1 and 4 (their values are greater than critical
displacements). Vectors £s,£4,f5 are corresponding to the stresses in the elements 5, 6, 7 (there
the stresses are greater than critical value}. The column vector £3 shows that, in order to decrease
the stress in the element 5 one must increase the ctoss areas of the elements 3-7, 9 and decrease
’the cross area of the element 1, 2; 8 and 10.
Note that, if the external loa.ds Py and Py are absent, our results for sensitivity vectors COIDClde
with the results given in {1], that shows exactness of t.he program.
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. Table 1
N Area & 5 £y 4 173
1 28.8 -.D0673 l -.00069 .00974 -.00.200 -.00111
2 .2 -.08581 .01289 05038 .26849 .02056
3 23.6 -.00525 -.00357 -.01143 00235 00130
4 15.4 -.00454 -.00018 -.00071 -.00379 -.60029
5 2 -.05090 -.59515 -1.32544 47776 -.94925
6 .2 -.23030 -.12960 -.50639 .94390 -.20671
7 3.6 -.06593 . -.27170 -.87009 -.17876 ~.45728
8 21.0 -._00862 -.00199 .02800 -.00575 -.00318
9 21.8 -.00641 -.00026 -.00100 -.00535 -.00041
10 -.24270 .03647 .14249 75041 05816

.2

Example 2. Consider the truss system of 20 elements (see fig. 2.) with the parameters:

E = 10'N/m?, ¢ = 0.1N/m® |

the ¢ritical displacement z = 0.026m, the’ critical stress o, =

26.10°N/m? This system is sub}ected to externa,l ]oa.ds P, = 500N, Pg = IOOON P3 = 1200N,

P; = 1400N, P = 1600N.

The results {see table 2} show that sensitivity vectors £; are corresponding to the dlsp]acement
in the direction of the axis Oz at the points 16 (these values are greater than critical displacement).
The vectors £, €3, £y, €5 are corresponding to the stresses in the elements 1, 4, 5, 10 (there stresses
are greater than critical value). Column vector #; shows that, in order to decrease the stress in
element 1 one must increase the cross areas of the elements 1, 3 5,9 10, 11 13, 14, 16 19, 20 and.
decrease the cross area of the element 2, 6.

In the tables 1 and 2 & is an mdex of the beam, the second column is the cross area of the
‘beam. To decrease the stress or displacement of the beam corresponding £ need to be interested
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in the value of the column vector component £;. If the value of vector component £; is negative
then the cross area of corresponding beam must be increased. If the value of vector component £
-is positive then cross area of corresponding beam must be decreased. The oder of value £; in the
tables informs us about the change level of the cross area.

Table 2

N Area £ I 12 £y fe

1 .250 62782 -1.00190 51501 -.00001 00001
2 .150 .10769 76114 76115 .00000 .00000
3 150 10333 - -.73033 -.73032 .00000 .00000
4 250 62242 -.51058 - 95028 -.00001 00001
5 250 .36414 -.00001 .00001 .13223 .00001
6  .200 017687 | 12316 .12318 - .00000 .00000
7 .150 .08749 .00000 © .00000 .00000 .00000
8  .150 08749 .00000 .00000 .00000 .00000
9 .200 .02166 -.15181 -.15181 .00000 00000
10 250 38414 -.00001, .00001 00001 13222
11 .250 . .41645 -.00001 .00001 -.00001 00001
12 .200 .01084 00000 .00000 .00000 .00000
13 .150 23867 -.00001 00001 -,00001 .00001
14 150 23867 -.00001 00001 -.00001 00001
15 .200 - 02073 .00000 .00000 .00000 .00000
16 .250° 41645 -.00001 .00001 -.00001 00001
17 .250 12610 .00000 .00000 .00000 ©.00000
12 .200 .00639 .00000 0000 .06000 .00000
19 .150 16181 -.00001 .00000 .00000 .00000
20 .150 16181 -.00001 .00000 .00000 00000
21 .200 01836 00000 © .00000 .00000 .00000
22 .250 .12610 200000 .00000 00000 .00000
23 250 02015 .00000 .00000 .00000 .00000
24 .200 .00006 00000 - 00000 00000 .00000
25  .150 - .08606 L0000 .00000 .00000 .00000
26 .150 .08606 .00000 00000 .00000 00000
27  .200 .01398 .00000 .00000 .00000 .00000
28 250 02015 00000 00000 .00000 .00000
20 200 01591 .00000 .00000 ,00000 .00000

CONCLUSION

Sensitivity analysis have a great role in solving the optimal design problem. With the help
of above mentioned algorithm and program we obtain the sensitivity vectors for solving optimal
design problems.
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Trén co sé& ly thuyét phin tich d4 nhiy cim cda cfu tric, phwong phip chidu gradient vi
phwong phip phan ti hérr han, mét t.huat todn chi tiét va hidu qud d€ xdc dinh véc to nhiy cdm
trong bai todn thift ké t8i wu di dwoc dwa ra. Cic két qui s8 minh hoa cho chwong trinh twong
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g véi thuit todn trén di dirge thiyc hidn véi mét s8 dian phing.
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