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" NON-LINEAR OSCILLATIONS OF PENDULUM
WITH VERTICALLY MOVING
MULTIFREQUENCY SUPPORT POINT

TRAN KIM CHI
“Institute of Applied Mechanics

In this paper the problem of nonlinear oscillations of the pendulum with moving two frequency
support point [1] is extended to the case of vertical multifrequency motion of the support point
by means of the asymptotic method of nonlinear oscillations 12] The stability conditions of the
equilibrium positions of the pendulum are delivered.

§1. EQﬁATION OF MOTION
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Let us consider a mathematical pendulum of length Z, mass m, whose support point A moves
vertically by the law:

OA = Zs = ay sinfwt + 0:1) + ap sinfwsat + ag) + - -+ an sin{wyt + ay),

where a;, w;, @; are constants.
The equation of motion of the pendulum is: |

mt28 4 hi + mé(g — Za)siné = 0, ‘ (1.1)
where overdots denote the derivatives relatively to time,
Dividing equation (1.1} by m#?w? and introducing the notations:
h t d a€; wy

H= —— 7 = wi = €y = — V=

) 72 ) d_‘r s 2 o (12)



where w is a positive number which characterises the average value of wy,.ws2, ..., wy and a is
average value of ar, a3, ..., ey, and A is coeflicient of friction, we can write (1.1} in the form:

H 5. . . N
g + ;9'4— {Zd—g‘-f- 7 [eluf sin{vyr + ;) +62V§ sin{ver +ag) + - -—f—eNUJZV SIH(UNT“FCZ}\,*)} } sinf = 0

(13
It is suppopsed that a /¢, wy/w and H/wg are small quantities of ¢ - degree, where ¢ is a small
positive parameter, so that . . :

wo

£ == E N _—= ,fcel }—;{- = 2A$2. (14)
£ W w

We have

9”—i—2)\529'+{52k2+5[61uf sin{vyr+a;)+evd sin(vor taz)t+ - t+ew ui,— sm(uNT+aN)] } sinf = 0.

(1.5)
Using the new variables  and () instead of # and #' by formulae [2]

f=¢+ e[el sin(v1r + ai) + eq sin(vgr + ag) + -+ + ensin{vyr + czN)] sin @,

1.6
g = efl + E[51’/1 COS(Vlf + Otl) + eqly cos(ug*r + az) + - tenvy cos(uN‘r =+ O:N)] sin ¢, ( ]

one can transform the equation (1.5) into a system of tﬁo‘equations of the first order:
p' = el - 201, cos P,
' = —e{Q cos o + &2 sin g + I, I3 sin g cos p) + 6211115 cos® p— (1.7)
1
- 2A0 — 20 L sinp — k° I, sinpcosp + 511213 sin? p},

where the terms with degree of smallness higher than two are neglected,

N N N
I = Zei sin{pT + a); L= Zei:/,- cos(vir + a); = ZG;'V,? sin (147 + ;) (1.8)

i==1 i=1 i=1

§2. APPROXIMATE SOLUTION IN THE NON-RESONANCE CASE

Let us consider the non-resonance case when the frequencies vy, vs, ..., vy are linearly inde-
pendent, so that between them there is no relation of the form

niyy 4 nova + o+ nyvw =0, {2.1)

where n; are integers, n{ - n3 ... 4+ n% # 0. Since the variables ¢ and 0 are slowly varying in

7, in the first approximation one can replace the right hand sides of (1.7) by their average values.
We have in the first approximation

' 99: 15 ﬂ=ﬂ1= (2'2}

where ; and {3 satisfy the averaged equations:
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P} = ey,
1 .
0 = e[ sin g+ (edu? + dvd 4 o+ R )sin 2]
‘The stationary solutions of (2.3} are
1) nl = 0; L= D:
{downward vertical position of equilibrium : 6 = §= 0)
2) ﬂl = 0} (p]. = 'ﬂ',
(upward vertical position of equilibrium : 6 =, f = 0)
3 =0, p;=po,
determined by the relation
1
K+ E(e%uf +esvE 4o+ eh v ) cosp = 0.
This solution exists if

1
k< E[efuf +e%u§ ot ehvi).

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

To study the stability of the stationary solutions we use the variational equations. Introducing

the variations;

M=, bp=yp; -5,

(2.9)

where ©* = 0, p* = 7 and @ = g for the cases (2.4), {2.5) and (2.6) respectively, we have

d

—8p = b

dr P TN

d 1 .

L 51— e con + (07 + B4 o) con2 b,
d?

dr?
The necessary stability condition of the stationary solution is:
&2 s lioa 209 3 3 2 . 0
cos p* + E(elu1 +eswy + - +eg i) cos 2ot > 0.

Namely, . ‘ :
1. For ¢* = 0 the condition (2.11) is always satisfied. .
2. For p* = = the necessary stability condition becomes:

1 .
k? < ﬂz-(efvf + el 4+ +edvd)
or taking into account (1.2}, (1.4):
2 _ 1rfay? 2 any? o
Bz [(F)oter (F) ut]
3. For ©* = py the necessary stability condition is

11

. 1
—=6p + &2 [k? cos p* + E(efuf +eqv2 + -+ efvi ) cos 2906 = 0.

(2.10)

(2.11)

(2.12)

(2.13)



2 2 :
wi > %[(%) wit -+ (ETN) wi,]. (2.14)
which is in contrary with (2.8). .
Since the characteristic equation of (2.10) has zero real parts, to solve completely the stability
problem of stationary solution it is necessary to comnsider the higher approximation.
" The refinement of the first approximation of solutions of (1.7) is:

P = L1y

N N
1
=10 - E{Ql CO8 Py E _ejsin&; — gsin 21 E V,-ef‘sin2§'j+

i=1 =1 ‘ ) (2.15)
1 N N ) .
+ - sin 2@1226,‘61'1/?[ sin{&; — &;) — sin(& + fj)]},
4 =1 51 Vi — vy o vy
w5t

where &; = vy7 + o4,
Substituting (2.15) into {1.7) and averaging their right hand sides we obtain the egquations of
the second approximation

‘)9’1 = efly,
' . i. L. . 2.16)
Q] = —r-:[!c2 sin; + Z(efulz + -+ ek ) sin 2901] — 22201, ( o

The stationary solutions of these equations are as before (2.4}, (2.5) and {2.6}, but the varia-
tional equation for them is of the form:

2 d : L1 |
3—135501 + 252)\56901 + sz[kz cos p” + E(efr/f‘ 4t equi)cos2p ]5501 =0 (2.17)
L 2, 4 .
which is different from {2.9) by the appearance of the term 2e ,\t—i-—&pl {¢* = 0,7,¢0). The
7

necessary and sufficient stability condition for the stationary solutions (2.4}, {2.6) is:
1. The solution ; = 0, ¢, = 0 is always stable (2.18}
2. The solution {}; = 0, w4 == = is stable if

1
B < L@+ dd)
or if

wy < %[(%)?war R (G—N)Zwif] (2.19)

3. The solution {1} = 0, v, = g 1s always unstable,

§3. THE RESONANCE CASE

It is supposed that between the frequency v; and v there exists a relation

=20, j#L (3.1)

The other resonance cases can be examined hy an analogeous way. Now, the equations of the
refinement of the first approximation remain the same as (2.15). Substituting them into (1.7} and
averaging on 7 we.obtain the following equations of the second approximation

|
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¥y = efh,
N

' . i 2 L
ﬂl}. — _E(kz singy + 3 81N o) COS 4 Ze?u{ ) -i-sz{.— 2201+ (3.2)

=1

f}_f_:'_lil_!_j__"__i')_ sin(ar; — 2a4) sin 1 cos® 1 — —efe;{20] + V;z) sinf{ez; — 2a1) sin® ) }
4([1’_«," e V]_) 8

- The stationary solutions of equations (3.2} are

) =0, ¢ =0, 3.3)
2) =0, p=m 3.4)
3) =0, ¢o1=pwn
where 0 13 determined frqm
N 2 2 2
ere vy vy
k% + = cos ©10 Zi e?y‘z + { i ;{:J( “1 Vl) J) sin(aj — 2a1) cos? ©ro—
1 -
- Eefg{?uf 4 Vf)_sin(a,— — %) sin? eplo} =0, (3.6)
This solution exists if
1
0 < Hehia i e i) 1)

The stability of the stationary solutions (3.3}-(3.5) is studied by using the variational equation
of (3.2) which has the following form

4% d 1
d—Tz&pl + 2)&52-&;6501 + s?{kg cos o] + E(efuf + oo+ ek ud) cos 2]+
2 2,2
e eresvi{vf +v7) " -
% s =) 2= ginfoy — 20) [ cos @] + 3cos 3| —

- %e%ej(va + U?) sin{a; — 2aq) [3 cos ] — 3cos 3901] }5901 =0 (3.8

“where S =1 — @}, ] =0,T, vio.

From (3.7} it follows:

1) For o} = 0 and for small ¢, the solution Oy = 0, ¢1 = 0 [downward vertical position) is
stable if;

K+ %(efuf%—---m%eQNujﬂv} >0 (3.9)

This condition is always satisfied.

2) For o} = 7 and for small e, the solution (1) = 0, @) = = (upward vertical position) is
stable if

o< sev? 4+ envd). (3.10)



3) For % = 0 and for small «, the solution {}; = 0, p1 = pyo is stable if
' 1
‘kz cos 10 + E(efuf R eiryfv) cos 2ip10 > 0.

Taking into account the relation (3.6):

2k2
F T R)

cos R —
P10 (G%V%
one can write the stability condition in the form
1 ' .
k‘2 > §{€1U?+"'+8NV£), (311)

which is in the contrary with (3.7).
. 1 .
Thus, with small ¢ and for &2 E(efz}f + -+ + e& %) the atability conditions (3.9}, (3.10}

are similar to those in the non-resonance case.

§4. CONCLUSION

1. The downward position of equilibrium (£ = 0, = 0) of the pendulum is always stable. The
midle equilibrium position ({2 = 0, p = o) of the pendulum is unstable. The upward equilibrium
position {{} =0, = ) of the pendulum is stable if there exists the condition (2.9} or (3.10}.

2. The presence of vertically moving components of the support point intensifies the stability
of downward and upward positions of equilibrinm of the pendulum (see (3.9), (3.10)}).
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DAO DONG PHI TUYEN CUA CON LAC
C6 DbIEM TREOC DICH CHUYEN THANG DUNG DA TAN

Trong bai béo, cdc két qud cda [1] dwoc mé réng cho tiwdmg hop diém treo cda con lic thue
hi¢n dao ddng thing dimg da tin. DE gidi quy&t tron ven bii toin vE sw dn dinh cla cée vi tri
cin biing ciia con 1ic di phdi xét dén x3p xi ¢dp cao. K& qud nghién ctu cho thiy:

1. Vi tri cin bing phfa dwéi cda con lic luén luén én dinh. Vi tri cin bing trung gian khéng
én dinh. Vi tri cin bing phia trén &n dinh nfu didu kién (8.10) dwoc thda man.

2. Sw xuft hién cic thinh phin dao déng da t3n cda dim treo cda con Hc 44 lam ting tinh
dn dinh cia céc vi tri cin bing phfa dwéi va phia trén (xem (3.9), (3.10)).
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