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FREE CONVECTION FLOW IN A VERTICAL THIN CYLINDER 
OF FINITE HEIGHT WITH POWER LAW FLUIDS 

NGUYEN VAN QUE 
Institute of Mechanics, NCNST of Vietnam 

1. INTRODUCTION 

In [1] free convection flow in a vertical channel of finite height and thickness with power la.w 
fluid is investigated. 

In this paper we consider free convection flow in a vertical thin cylinder of finite height with 
given external temperature (see Fig. 1). The problem is solved by a finite difference scheme. The 
calculation result when the height is much bigger than the diameter is compared with asymptotic 
one. A condition of neglecting the thickness is shown. 

2. BASIC EQUATIONS AND ESTABLISHING THE PROBLEM 

According to the boundary layer theory and Bushinhesc approximation, in cylindrical coordi­
nates the problem is governed by following equations in dimensionless form (see [2, 3]). 

Continuity equation: 

Momentum equation: 

Energy equation: 
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17 - apparent viscosity, D = 2R, 5 - the wall thickness, T 00 - temperature of surroundings, Tw -
temperature at external wall, T1 - the temperature inside the wall, p' = p(z)- p(O) + gpz, Prg> G,g 
- generalized Prantl and Grashof numbers, £1k - kinematics viscosity, p - density, Cp - specific heat 
coefficient, ..\ - thermal conductivity, g- acceleration of gravity, f3 - thermal expansion coefficient. 

Boundary conditions: 

v,G, z) =v,G, -z) =0; 

_ _ a;;. _ aT _ 
v,(O,z)= ar(O,z)= ar(O,z)=O; 

TrG+b',z) =Tw; T,G ,z) =TG ,z)' 

>.,aT, (~ -z) = >.aT(~ -z). . 
8¥2' Gr2'' 

p'(o) = v,(r, o) = T(r, o) = o; 
iJ,(r, 0) = Vzo; P'(1) = 0. 

(2.5) 

Because of the smallness of 8 in comparison with H; ( ~) <: 1 the second term in (2.4) can 

be neglected. This leads to the following equation: 

!. (-raT,) = o 
ar ar 

1 1 -- <r< -+S 2- - 2 

In addition, from the continuity equation and condition il, ( ~ , z) = 0 it follows: 

1/2 

(2.6) 

J r v.dr = const = ~vzo ;,, (2. 7) 

0 

The unknowns of system (2.1)-(2.7) are il,(r,z), v,(r,z), T(r,z), T1(r, z), p'(z), Vz<>. 

Two quantities of particular interest are the average velocity along the channel Vzo and the 
total heat transfer from the wall Q, which is characterized. by average Nusaelt number N u.o 

3. NUMERICAL SOLUTIONS 

First, we can exclude T, by integrating (2.6) combining with (2.5), and we get following 

boundary condition for T at r = ~ : 

>., 
where tf; = :-:---:'-'~= 

>.ln(1 + 28) 

( -(1 ·)) aT(1 -) 2¢ 1 - T 2 , z = a-r 2 , z 

Mter T has found Tr can be calculated as 

(2.1)- (2.4), (2.7), (3.1) is a closed system for il,(r, z), v.(r, z), T(r,z), p'(z), v,,. 
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We solve this system by a finite difference method. The finite difference equation {see Fig. 2) 
(drop signs . for convenience) 

( •+I )1+1 ( H1 )J+1 ( •+I )J+I ( •+1 )J+l ( )J ( )J r v r k+l - r v r k r v z k+l + r tJ 11 1c - rvz k+I _- rvz k 

Ll.r + 2LI.z = 0 (3.2) 
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+ Gro T • + (2\.r)2 . 
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, I Uk+l - Uk ~n-1 I Uk- Uk-1 ~n-1 
where '1k+ 1 / 2 , 'lk- 112 lS taken equal to Ll.r ; Ll.r . 

This is a non-linear system. The truncation errors is of O(LI.z, Ll.r"). The Von Neuman 
stability condition is satisfied unconditionally. 
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We solve this system by iterating on index ~; Let1s assume that all quantities at J - row 

and quantities with index s at J + 1 - row are kiiown. From (3.4) using the Thomas algorithm 
•+1 . 

we can obtain T 1 +1 . Introducing into {3.3) gives (drop index s + 1 and J + 1 at v, and;/ for 
convenience). 

A•(v,)._1 +B.(v,).+C•(v,)k+1 +p'=D•; k=2,N-1 

(v,) 1 = (v,) 2 ; (v,)N = 0 

1/2 

J rvzdr = ~Vz0 
0 
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(3.5), (3.6) are (N + 1) equations for (N + 1) unknowns p1
, ( v.) 1 , ( Vz ) 2 , •.. , ( v.) N" We solve 

this system as follows: 
Let 'p1 , p2 ; p1 # p2 - two arbitrary values. Using the Thomas algorithm we can find two 

solution v£1
), v£2 l: 

of system (3.5). Because of the linearity ap1 + (1- a)p2, avl1l + (1- a)vi2l; Va are solutions of 
(3.5), too. Substitution into (3.6) gives: 

After /Jt 1;+1 has found, introducing into (3.2) we can find ... t1~+ 1 and $0 on, until the variables 
with index s + 1 coincide with the variables with index 3. The initial values are taken equal to 
values at J. At entrance z = 0 a given (guessed) valued of v., was used as starting value. If the 
calculation up to z = 1 yielded a value of p'(1) of zero then the correct value of Vz0 had been used. 
If not th' process was repeated .until p1(1) was zero. 

4. DISCUSSION OF THE RESULTS 

a) Asymptotic solution 
When (H/ D) -> oo then far from the entrance the problem is one-dimensional and we can 

find the solution easily 
T=1 

v = _n_alfn [(1/2)1+! - rl+!J 
z n+l rg 

(4.1) 

It yields 

n l/n(1)l+;t v., = 3n + 1 a,. 2 (4.2) 

If h stands for average heat transfer to the liquid coefficient then. 

h = ~ . !_n_p, . al/n (!c) Hi 
D 43n+1 rg rg 2 

N = hD = !_n_P. .al/n(!)H! 
" 0 A 4 3n + 1 rg rg 2 

(4.3) 

2 A, - 1 
For comparison we take P,g = 100; a,9 = 4, 79 · w- , n = 0, 66; - = 4, 8 = -

A 8 
(4.2), (4.3) give 

Vz0 = 3.87 · 10-4 

- - -3 N.,D- 9.68 ·10 
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Numerical solution are 

v,, = 3.74 ·10-· 

Nuo = 9.57 ·10-3 (Q = 3.59 · 10-2W) 

The differences are smaller 3.5%. 
b) Numerical example . 
The fluid under consideration is a 1000 wppm solution of water and CMC (carboxy methyl· 

cellulose). The input data are as follows {see [2]) 

T,. = 25•c 
D=2cm 
p = 1000kgfm3 

>. = 0.597W fmK 
f3 = 1.8 ·10-4 1/K 

Too= 15°C 
H= 20cm 
Cp = 4.18··103 JfkgK 
Vk = 7.35 ·10-8m2js2-n 

D 
n = 0.66, 6 = a· 

The calculation results are v,0 = 3.26 · 10-2 (that is 0.103 cm/s); Nu
0 

= 1.94 (Q = 7.26W) 

for the case of t/1 = /' ./ = 17.9. The distributions ofT, v, v, are shown in figures 3, 4, 5. 
>.ln1+26) . 

Comparing with the case of wall thickness ignored [3] we S!"' that the wall thickness reduces the 
convection as well as the hea&·tr'!llsfer. This influence is characterioed by parameter t/J solely. 

The bigger t/J is the smaller the influence is. Calculation shows that when t/J 2: 100 the 
differences caused by wall thickness is smaller 2% so we can neglect it 
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Fig. 9. Dimensionless temperature distribution 

1. at z = 2.5 ·10-5 H, 2. at z = 0.5H, 3. at z = H 
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Fig . ..j.. DimensiOnless coinponent V.z diatributio~ 
1. at z = 2.5 · lo·-sn, 2. at z = 0.5H, 3. at z = H 
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Fig. ·s. Dimensionless component Vr distribution 

1. at z = 2.5 · 10-5 H, 2. at z = 0.5H, 3. at z = H 
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