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INTERACTION BETWEEN PARAMETRIC AND FORCED
OSCILLATIONS IN FUNDAMENTAL RESONANCE

NGUYEN VAN DINH
Ingtitute of Mechanics, NCNST

- In nonlinear systems, the interaction between different oscillations is complicated and has

attracted the attention of a lot of researches [1, 2]. Interesting results have been obtained, some

aspects of this phenomenon can be found in a recent work [3].

The present paper is devoted to examine the interaction between parametric and forced oscilla-
tions in fandamental resonances. Some remark about the resolution of the equations determining
the stationary oscillations will be given, some particularities of the resonance curve will be de-
scribed.

§1. SYSTEM UNDER CONSIDERATION AND THE AVERAGING METHOD

Let us consider a quasi-linear oscillating system governed by the differential equation

& +w?s = e{ — hi — y3° + Az + 2pz cos 2wt + gcos(wt + o)} (1.1)

where z - an oscillatory variable, € > 0 - a small parameter, 2 > 0 - the damping viscous coefficient,
« - the cubic nonlinearity coefficient, 2p > 0, g > 0 and 2w, w - intengities and frequencies of the
parametric and external excitations, respectively, A = (w? — 1) - the detuning parameter (1 - the
natural frequency), o(0 < o < 27) - the dephase angle between two excitations.

Introducing slowly varying variables a, # (amplitude and dephase of the oscillatory regime).

T=0cosp, &= —awsing, @=wt4d (1.2)
we establish the averaged equations:

&= ——;—{hwa + pasin 26 + gsin{f — o)}
o (1.3)

5 a 37 2

f = ——~—-{ (A -5 )a + pacos 26 + gcos(f — o-)}

Let (ao,05) be the amplitude and the dephase of the stationary oscillation. By vanishing

the right hand sides of (1.3}, we obtain two algebraic - trigonometrical equations for determining
(GD: 90):

haw + pasin 2§ + gsin(f — o) =0

1.4
(A—?ag)a+pac0326+qcos(8—a) =0 (14
or, in equivalent form:
, ;
haw gin § — [(j}az—&) —p]acosﬂ =—gco3g (1.5a)
3
[(—4'102 —A) +p]asin6+hawcos€ =gsino (1.5b)
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As usual, first, (1.5) will be considered as two linear algebraic equa,tlons of two unknowns
u = sinh, v = cosf. Then using trigonometrical formulae (for 1nstance ¢in® 4 + cos?§ = 1} the
amplitude - frequency relationship will be obtained

Two cases must be distinguished

1. The “ordinary” case where the determinant {of the a.lgebra.ic linear equations (1.5a})j is
different to zero _

3
e (e
=1 8 =a?’D #0
[(-ﬁl—a2 - A) + p]a haw |
or (since g # 0, the sysiem considered does not admit.the equilibrium regime o = 0):

D= (?ag—A)2+hzw2-—p2¢0

2. The “critical” case where D=0or D=0
To illustrate this remark, we shall examine in detail the oscillating system without damping.

§2. RESONANCE CURVE OF THE OSCILLATING SYSTEM
WITHOUT DAMPING .

For the system without damping, h = 0, the equations (1.5) as the determinant (1.6) become
more simple

[(ig-ag - A) - p] acosd = gcos o : | {2.1a)
[(EEGZ—A) +p]asin9= qsina (2.1b)

D= (o) - [(-0) - [G-0) ] e

It is noted that, in the plane (A, a?), I = 0 is just the resonance curve of the pure - paramet-
rically - excited system {g = 0) which degenerates into two straight lines:

3 .
Dy ?GZ;A+p and Dj: -}a.z:A—p (2.3)

L. If D # 0 (the plane (A, a?) after excluding Dy and D3), we have:

cos O sino
q

cosf = ; sinf == : (2.4)
To-a) e
[(4a. A) rla (4a A)+pa.
and the amplitude - frequency relationship is of the form:
2.2 ' 2 2 ‘
Wy = g°cos’o ¢“sin“ o Ci=0 | (25)

() e [ -a) o

(2.5) give only some “parts” of the resonance curve, the “parts” lying out of the straight lines D,
and Dy

2. If D == 0 {either in D; or in D;) the two algebraic equation (2.1) can be resolved- When
o =0, x/2 m 37/2 Indeed
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2a. InD, : -g a? = A+ p. from (2.1a) we deduce o = #/2, 3%/2 and vy = cos§ arbitrary,

then, from (2.1b}) .
u, =sinf = 2—1% (2.8)

The corresponding algebraic - trigonometrical eciua.tions (2.1) admit the solution:

£

3
-162=A+p, ‘1224172 ’

. + . '
y smﬂ:-z—q, cosf = xV1i—sin’¢ (2.7)

pa

2b. In D3 : Ta. = A — p, from (2.1b}, we deduce ¢ = 0, 7 and uy = sin # arbitrary, then,

from (2.1a):
Vo =cosf = %‘i— (2.8)

The corresponding algebraic - trigonometrical equations (2.1} in this subcase admit the solu-
tion: '

3 =
—41G2=A—-p, azzf:?, cosﬂ:ﬁ, sinG::tl 1—cos?/f (2.9}
Thus: )
1. ¥o# 0, /2, #;, 3n/2, the resonance curve - the entire resonance curve - iz given by (2.5)
2. If ¢ = 0, m, the resonance curve consists of two branches : - the first branch is given by

(2.5) - the second one is given by (2.9},

3. f o = n/2, 37/2, the resonance curve consists of two branches too : - the first also given
by (2.5) and the second one by (2.7) '

In figure 1, the heavy line represents the resonance curve COITeSpondiIlg to the values ¢ = 0,
~v=0,8p=0, 25,q~0 2, given by (2.5) and (2.9).

For the same values 7, p, ¢, the resonance curve (2.5) corresponding to o = r/4 is plotted in
figure 2.

Fig. 1 Fig. 2
Remark - (2.5) is often replaced by: ' '

[ (e otor] (=) o] e} [ (1-8) ] =0 a0
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It is necessary to note that {2.5) and (2.10) are equivalent only if D # 0. In the critical
case where D = 0, the relationship {2.10) gives us also “parts” (2.7}, (2.9) but not the inequality

a® > ¢# [4p®.

§3. RESONANCE CURVE OF THE SYSTEM WITH DAMPING ‘

 For the system with damping, k> 0.
1. If D +# 0, from (1.5), we deduce:

smﬂ—--a—qﬁ{hwcoscru [( T2 )-p] sina}

(3.1)
co§9=aiD{hw31no+[(§§az—A)+p]cosa} '
and the amplitude - frequency relationship is of the form:
2
| 37 4 Y] . 31 2 2 -
W, = W{(’W cos o — [(-Z—a. —A) -—p] sin o) +(hwsm‘a+ [(Tu -—-A) +p] cos o) }—(;.2_(;
.23
or . 3 .
- 4 udt % 20 i 1=
Wi = 22 { [( 2° A) +pcos2o’] + [hw +psm2cr] } 1=0 (3.2b)
As it has been in §2, under condition D = 0, (3.2) can be replaced by
3 2
W= q2{ [(—}az - A) +pcosZo‘] + {hw +psin20]2} - =0 - (3.3)
2. If 3 )
D= (j-:-az - A) +hZw? —p? =0 (3.4)

. the two linear algebraic equations (1.5} is in “critical” situation respectively by [D] and [D], we
denote the coefficiens mairix and the extended one:

39 2 _
D)= haw —[(40, A) p]a as
R (CERATY P "

7% pla aw

(32— AY —ple -
[ﬁ] _ o 2haw [( ° A) p}a geoso (3.6)
[(Ta —A) +p]a haw gsing
Since R > 0, w = 1, if D = 0 we have:

rang [D| =1 (3.7)

Hence, the a}gebfaic equations (1.5) can be resolved only if:
rang [D] =1 (3.8)

This requirement leads to two equations:

hwa - —{coso
3

(B %) e | afhsine - [(-8)# e} <0 e
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_[(%T_az - A) +p]a —~gCcos o

a ssing = aq{hw cos g — [(3_’7;12 — A) - p] sino} =0 (3.9b)

4

or, in equivalent form:

hw+psin20 =0 ' (3.10a}
3
(ugaﬂ - A) +pcos2o =0 (3.10b)

It is easy to prove that the equations (3.10} admit an unique solution {A,, o?) satisfying (3.4).
It means that, in the curve D = 0 (the resonance curve of the pure parametrically excited system).
there always exists a point C.{A., a?) at which the algebraic equations (1.5) can be resolved and
can be reduced - for instance - to (1.5a):

A, u— [(3—}& - A,) - p] av = —gcos o o (3.a1)

However, C, is acceptable only if ¢Z > 0 and if A, is in the neighbourhood of zero (in the
resonance region), if not, C, must be rejected. Moreover, even in the case where C, is acceptable,
it may be that the trigonometrical equation corresponding to (3.11) i.e. the following one

hw.a, sin § — [(Taz - A, ) ]a* cosf = —gcoso (3.12)

does not admit any solution. Trigonometrical solutions exist only if:

{hz 2y [( —a; -*A*) - ]2} > qicos o (3.13)
or, by using (3.13):
2> Ed (3.14)
* 2 37

Thus, if (3.14) is satisfied, the point C, corresponds to determinated stationary oscillations
g0 that C. is the second “branch” of the resonance ¢urve.
The point C, plays a special role:

ow ow

' Ba.le.

IG* =0, =0 1ie. C, is a critical point (3.15)

of the curve C determined by the relationship W =0

W 2 2 4 2 2, 2 22 2
3487 |0, = 2{g + e — h*aZ — 4h“pat cos 20 — 4p“a” cos 20}
oW 2
_ .16
TADaE . ( ){ ¢ + 2h%pa? cos 20 + 4p%a? cos® 20} (3.16)
Fw v 2 2.2 .2
—6(a2)2 o .._2(——4) {q — dp“a; cos 20}

so that, in the neighbourhood of C., by neglecting the terms of powers greater than 2 relative to
= A~ A, y=a® ~ a., the curve C is given by:

31\2 ‘
W = (%) {& — 4p°a? cos® 20}y +2( ){4pza. cos® 20 + 2phZal cos 20 — ¢ }yz+
2, h¢ 442 2 2 2 2
+ {q + Tz — h*a? — 4ph®a? cos 20 — 4p®a® cos 20‘} =0 (3.17)
w2 ‘
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The quadratic form of the left hand side of (3.17) has as discriminant:
3
D= ( ’T) {4pa? cos® 20 + 2ph®aZ cos 20 — ¢° }2-

3 h2q?
—-( il ) {q® — 4p”a? cos 20}{(1 + —= ™ — hia? 4ph"a2c0320'—4p a? cos 20} =

37\?R%? . 22 g : .
— il - 3.
—(4)4@‘3(4?“* Q) (18}

- If a2 < ¢?/4p?, then D < 0, therefore C, is an isolated point of the curve C determined by
W = 0 but does not correspond to any stationary oscillation. In this case, the resonance curve is
obtained from C after exciuding C,.

- if a2 = ¢?/4p?, then D = 0, therefore in the neighbourhoed of C.,, there existe two branches
of C, connecting themselves at C., having at C, the common tangent and form so a sharp cap
(this remark can be deduced by retaining the terms of powers 3 in the expression of W in the
neighbourhood of C.)

- If aZ > ¢* /4p%, then D > 0, therefore in the neighbourhood of C., there exists two branches

of C, intersecting themselves at C.. In two last cages. C, corresponds to determinated stationary
oscillations and the resonance curve is given by C (W = 0} including C..

Let us fix v = 0.8, p = 0.25, h = 0.22. For ¢ = 0, from (3.10) we deduce A, = —1,
a? = —3/3v(1 + p) so that C, is not acceptable. The resonance curves corresponding to ¢ = 0.007
and g = 0.05 are presented in the figure 3 by the curves o, b respectively. If ¢ is small enough, the
_resonance curve (a) consists of two branches, separated by the curve D = 0 {the resonance curve of
the pure - parametrically excited system). Increasing g, the branch lying under D = 0 is restricted
then disappears and the resonance curve consists of an umque branch lying upon D = 0.

3 -—
For o = 3n/4, from (3.11) we deduce a2 = A, p__h_z_h_ /2 0.29 and the critical point

C. is acceptable. In figure 4 the curves g, b represent the resonance curves corresponding to the
values ¢ = 0.1, ¢ = 0.2, respectively: the resonance curve consists of two branches, connecting at
C., lying respectively under and upon the curve D = 0; increasing g, the branched lying under
D =0 is restricted then disappears

a?
)

By
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§4. STABILITY OF STATIONARY OSCILLATIONS

The stability study of the stationary osciilations (ao, fp) will be based on the following varia-
tional equations:

§a = ——-é-z{hw + psin 26y }éa ~ i)—{Zpag cos 28 + gcos(fy — o) }64 (4.1)

Y

£ Oy € . .
= T {p cos 28¢ -+ (A — z—a;‘;) + pcos 290}6a+ m{zpao sin 28g + gsin(fo — o) }56

where §a = @ — ag, 66 = 6 — 6 are the variations of the amplitude and the dephase, respectively.
Using (1.4), we write (4.1) in the form:

' 3
§a =_—i{hw + psin 26p}6a — i{pa.g cos 26, + (:—’ag - A) 50}59

- € 9y 5 e .
60 = o {P cos 26y — (?ac A) }5a o {hw — psin 260}53

and the characteristic equation can be established:

P +£hp+422{D+2(%)a3[(%ag——!_\) +pcos290]}"=0 . (4.3)

The first stability condition h > 0 is satisfied for the gystem with damping, the second one is
given by the inequality:

D+ 2(?)&3[(?a§ - A) + pcos 290] >0 (4.4)

Using again {1.4) and (3.3) we find

pcos 20 = (?aﬁ - A) _ 4 {(ilag - A) +.pcos 250] (4.5)

So, (4.4) can be written as:

D-+a(334) (233 8) - o[- &) pemc]} -

=D+4(§41a§) (-3:;1@0 A) -—2( :)D[(SI% A) +pcos2a] = —%ZZ >0 we)

Analyzing the signs of D) and W /8a?, from (4.6} we can easily determine in the resonance
curve, the “parts” corresponding to stable stationary oscillations and those correspondmg to un-
stable stationary oscillations.

Since —3| = 0, the stability of the stationary oscillations corresponding to the critical point

362 Ia
C. cannot be deduced from the variational equations (4.1}.

CONCLUSION

Using the asymptotic method, we have examined the interaction between parametric and
forced oscillations in fundamental resonance. We have concentrated ocurattention on the critical
situation and the critical point in the resonance curve has been analyzed in detail. Depending on
this critical point, diverse shapes of the resonance curve have been obtained.
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TUONG TAC GIT A DAO DONG THONG SO VA cUGNG BUC
& cONG HUONG CO BAN

Bai bdo xét twong tdc gitta dao ddng thong s8 vi cwdng bidc & hé 4 tuyén khi ci hai d%u &
céng hwéng co bin (twong ¥ng t3n =8 kich ddng lin cin gip ddi vi bing tin s8 riéng). D3 phin
biét trwdng hep thwdng va trwdng hop t&i han khi gidi phwong trinh dai s8 - lwgng gide dé xdc
dinh bién 46 va pha cta dao ddng dirng. D3 phin tich difm la trén dwdmg cdng huwdng vi thiy
méi lién quan gifra tinh chit diém la véi cic dang dwdmng cdng hwdng,

CONVECTION IN BINARY MIXTURE ...

{tiép trang 4)

The publication is completed with financial support from the National Basic Research Program
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CHUYEN DONG DOI LUU TRONG HON HOP
HAI THANE PHAN €O MAT THOANG

Trong bii bio ching minh dinh 1y t8n tai vi duy nhit nghiém suy réng cla bii todn v chuyén
déng d6i lon nhiét trong hdn hop hai thinh phin ¢é mit thoing
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