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SUMMARY. Underground Structures and Pipes can be analysed as slender structures 

completely embedded in the soil. 
For the dynamical analysis soil and structure can be investigated by decoupled structural 

models. The horizontal layer system of the soil is modeled as a shear beam while for the structure 

a flexural beam is used 
Both models will be finally coupled by elastic foundation. 

1. INTRODUCTION 

For an earthquake resistant design usually the following verifications have to be carried out: 

(1) Stress and strain in longitudinal direction of the.structure, due to the earthquake waves 
which are travelling through the soil 

The structure has to follow the displacements of the soil, this yields to bending moments, 
shear forces and axial forces in longitudinal direction. In cas~ of joints, the movements of the 
joints has to be determined to design the joint - construction. 

(2) Stress and strain in transverse direction of the s~ructure, due to the reduced internal 
friction of the soil. 

Depending on the vibrations the internal friction of the soil can significant decrease up to zero. 
This effect is called [1} "soilliquifaction,.. 

Since soil and structure move largely together, for the calculation in transverse direction the 
assumptions of the "earth pressure at rest" considering the actual internal friction can be used. 

2. NOTATIONS 

x, 1Jr-Z :coordinates Wn: n-th circular frequency 
u, tJ : displace~ents </>n: n-th mode 
e, 1: strains rn: participation factor of the n-th mode 
p : mass density D: damping ratio 
E: modulus of elasticity of the soil Dn: modal damping of the n-th mode 
G: modulus of shear of the soil 1§ J)B; bending stiffnes of the structure 
p.: Poisson's ratio of the soil Dn: average modal damping of the n-th mode 
ell : Shear wave velocity s.: the acceleration of the soil elements otick 
Cp: compressional wave velocity with the structure 
).; wave length L: characteristic length of the Winkler beam 
fn : n-th frequency t: length of the structure 
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3. GENERAL ASSUMPTIONS 

Mass distribution and stiffness of the structure does not effect the vibration behaviour of the 
soil- it is therefore sufficient to investigate as a first step only the dynamical response of the soil. 

The deflections of the soil due to an earthquake can be analysed by using the wave propagation 
theory. The ·corresponding vibration model of the soil is assumed as a infinite horizontal layer 
system. Only shear wave effect h'as to he taken under consideration. 

Stress and strain of the structure are then analysed by the assumption that the structure 
follows the movements of the soil with only small relative dellections between soil and structure. 

4. DYNAMICAL ANALYSIS OF THE SOIL 

Dynamical phenomenons in the soil can be 
described by the theory of wave propagation in a 
half space. 

Two grbups of waves have to be distinguished 
-Body waves 
- Surface waves 
In the group of the body waves (see Fig.l)we 

knoW shear waves respectively S-Wave and com­
pressional waves respectively P-Wave and in the 
group of the surface waves we distinguish Rayleigh­
Wave and Love-Waves. 

The influence of the surface waves is limited 
of a relatively small area. For the followi!>g design 
suggestion surface waves are therefore neglected. 

In case of shear-waves, soil particles move 
perpendicular to the wave propagation. The cor­
responding stress strain state is of pure shear; the 

u) 

b) 

c) I I II~ -[911111111111111!111 

1----"!1-----1 
--+ direction of wave propagation 

+--+ direction of soil movements 
material does not change_s its volume. Fig. 1. Demonstration of the body waves at a single bar 

a) bar at rest, b) shear wa.vefS-wave, c) compressional wave/ P.wave 

In case of compressional waves, soil move­
ments and wave propagation have the same direc· 
tion. The corresponding state of stress and strain 
is axial. The elements of the soil are stretched and 
compressed. 

Due to the different wave velocities compres­
sional waves are much faster than shear waves. 
This means that S-Waves and P-Waves do not 
affect the structure at the same time. 

On the other hand the movements, cOrre­
sponding to the shear waves are much bigger as 
in case of compressional waves. 

For practical investigations it is therefore suf­
ficient to consider only shear wave effect~ 

The differential equations of the ..JVave pro­
pagation [4] in a solid body can be found by the 
equilibrium of the d' Alembert forces (Fig, 2) and 
the alteration of the elastic state of stress. 

a) 
82 v 

p at2 dxdydz 

y,v 

Fig. 2. Equilibrium condition at a. sOil element 

a) pure shear wave action, b) pure compressional wave action 
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a2 v a2v -=c2 __ 
at2 'ax2 
a2.. • a• .. 
--=c --at2 p ax• 

(4.1) 

(4.2) 

In equations (4.1) and (4.2) c, and cp means the shear wave velocity and the compressional 
wave velocitY 

c,=~ (4.3) 

,-------:--
E, {1- ~) 

p 11 + ~) . (1- 2~) Cp = (4.4) 

Equation (4.5a) is a solution of (4.1). In this expression the wave length An can be substituted 
by An = c,j In· 

V = Vo,n 
• 211' 

sm An (x- c,t) (4.5a) 

v = Vo,n 
, 211'ln( ) sm-- z-c,t 

c, 
(4.5b) 

To describe the complete shape of the shear wave we have to determine a displacement vo,n. 
and a frequency In· 

To calculate the displacement and the frequency caused by shear deformations, the soil can be 
modeled as an infinite layer system [2, 3]{Fig. 3). This layeuystem can further simplified as a shear 
beam. H we want to use. conventional computer programms the shear beam can be substituted 
by an flexural beam with the bending stiffness B;, lumped masses N; and the condition that the 
angel of rotation at each node is zero. 

(4.6) 

(4.7) 

For the dynamical analysis (Fig.4) the response spectrum method may be used, provided that 
a spectrum for the bedrock of the layer system is available. 
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b) 
Fig. 9. Vibration model of the soil 

B· 
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c) 

a) infinite parallel layer syste:m, b) equivalent shear beam, c) equjvalent beam with bending flexure 
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STRUCTURE 
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Fig. 4. Dynamical analysis of the soil 

The acceleration of a certain mode is found by the following, well known expressions. 

an= if>nf nSa(/n, Dn) {4.8) 
an 

Vo,n = _(2•'fn)2 {4.9) 

5. STRESS RESULTANTS 

Stress and strain of the structure are then analysed under the assumption that the structure 
follows the displacements of the soil. 

This means, that .the dellection curve of the structure is equal to the shape of the wave. 
Soil structure interaction has no significant influence on the vibration behaviour of the slender 

structure. 
In case that the wave propagates in the same direction (Fig.5) as the structure (a= 0), 

the stress resultants are found from the product of the bending stiffness of the structure and the 
corresponding derivati()ns of the shear wave disp~acements. 

~ Wave- front 

1·-------~-A--------~ ......... --...... , / 

.......... ___ ............ 

~: ~ ~ "x 
y 

' 
~x' 

Fig. 5. Propagation direction of the wave front 

(
2.. )2 

Mn = ±(E J) B Vo,n --;-In 
• 

(
2.. )' Qn = ±(E J) 8 Vo,n 7; In 

(
2.. ). 

Pn = ±(E J) B Vo,n --;-In 
• 
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The so far described method works under the <tssumption, that the elastic foundation between 
soil and structure is stiff enough, that there occur no relative displacements between soil and 
structure. Soil- structrure - interaction is of minor influence. 

The relation between the displacement of the soil and the displacement of the structure (Fig, 6) 
can be estimated by the following equation 

VB 0.0026('£) 
4 

- = ---'-"'+-:--. 
1 + 0.0026 (?) 4 vo,n 

(5.5) 

with 

(5.6) 

The corresponding parameters are the wave length A and the characteristic length L, which 
is describing the elastic foundation between the structure and the soil. 

VB /Vc,n 

1,0 - - - - -- ------

Fig. 6. Soil structure interaction 

This equation is derived by imposing the soil a statical sinns shaped deflection and the distri­
bution of the bedding forces are also sinus shaped. 

With this equation the influence of higher modes can be estimated very easyly. 
Higher frequencies yield to a shorter wave length. For ratios >./ L less than 3 the displacement · 

of the structure is less than 20%. In this case the soil displacement will not be transmitted on the 
structure. The strUcture remains in rest. 

The stress resultants can be significant reduced and influenced by the arrangement of joints. 
In a joint. the bending moment vanishes while shear forces usually can be transmitted by the 

joint construction. 
The influence of joints can investigated by using a beam on elastic foundation. 
H for instance the distance of the joints is a quater of the wave length (see Fig. 7a) we will 

find the reduced stress resultants by superponing the systems (4.1) and (4.2). 
With the diagrammas of Fig. 7 (b) and (c) the reduction factors for bending moments 'IM 

and for the shear force at the joint 1'/Q can be found. The corresponding parameters are the wave 
length the characteristic length L and the distance t between the joints. 

The calculation may be carried out by the following steps: 

(1) Calculation of the stress resultants of an infinite structure and for the individual modes 
ace. to chapter 4 and 5 

Mn = ±(E J) 8 

Qo,n = ±(E J) 8 

Modes with a ration >./ L less than 3.0 may be neclected 
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Fig. 7. Reduction of stress resultants due to joints 

a) superposition method for bendiilg moments, b) reduction for bending moments, c) reduction for shear 

forces at the joints 

(2) In case of joints the reduction factors ~M and ~Q may picked up from the diagramms 
of Fig. 7. 

red Mn = Mn ~M 

red Qo,n = Qo,n ~Q 

(5.9) 
(5.10) 

(3) Superposition of the individual modes. The simplest and most popular suggestion for 
this superposition is the square root of the sum of the squares. 

m:ax, red M = ..j'L,(red Mn) 2 

max, red Qo = 'L,(red Qo,n)2 
n 

(5.11) 

(5.12) 

The movements of the joints can be rough estimated by the following equations (see Fig. 8) 

a l b 
t:.K=-·­

c~ 2 
iJ 

t:.e=-l 
2 c, 

The joint construction must be able to resist this movements. 
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Fig. 8. Movement at the joints 
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TfNH cA.c Kih cA.u ONG TRONG DAT 
DUO! TAC DVNG CUA DQNG DAT 

Tac gia nghien c.ru "" lam vi~c cda cac kil't ctu ling nAm trong lOng di(t du-6i tac d~ng cda 
d<}ng dilt. 0 day, h~ cac lap ngang cda cUt du-gc coi nh1l nhfrng thanh t5 hgp chju citt, con ke't 
di:u nhtr nhirng tha.nh chju uSn. GilL thie't dit va. ktft c.tu d~u 13.m vi~c trong tr~ng th.ii d3.n h'Oi. 

Sd- d~ng ly thuye't truy~n song va cac gia thiil't neu tren, tac gia da d1ta ra phmtng phap tinh 
chuy~n viva. n9i lvc trong ke't c<tu cOng trinh, dOng thOi chi rO ccic tham s() hh hllb-ng den chU.ng. 


