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SUMMARY. Underground Structures and Plpes can be analysed as slender structures
completely embedded in the soil,

For the dynamical analysis soil and structure can be investigated by decoupled siructural
models. The horizontal layer system of the soil is modeled a8 a shear beam while for the structure
a flexural beam is used.

Both models will be finally coupled by elastic foundation.

1. INTRODUCTION

For an earthquake resistant design usually the following verifications have to be carried out:

(1) Stress and strain in longitudinal direction of the structure, due to the earthquake waves
which are travelling through the soil.

The structure has to foliow the displacements of the soil, this yields to bending moments,
shear forces and axial forces in longitudinal direction. In case of joints, the movements of the
jointa has to be determined to design the joint - construction.

(2) Stress and strain in transverse direction of the structure, due to the reduced internal
friction of the soil.

Depending on the vibrations the internal friction of the soil can significant decrease up to zero.
This effect is called [1] “soil liquifaction”.

Since soil and structure move largely together, for the calculation in transverse direction the
assumptions of the “earth pressure at rest” considering the actual internal friction can be used.

2. NOTATIONS

%, ¥,-2 : coordinates Wyt n-th circular ffequency

4,v: displacements Pn : n-th mode

& 7 strains T, : participation factor of the n-th mode .
p: mass dengity D damping ratio

E: modulus of elasticity of the soil D, : modal damping of the n-th mode

G: | modulus of shear of the soil (E J), : bending stiffnes of the structure

T Poisson’s ratio of the soil D, : average modal damping of the n-th mode
¢, * - shear wave velocity S, the acceleration of the soil elements otick
cp: compressional wave velocity with the structure

A wave length o L: characteristic length of the Winkler beam
fn: n-th frequency - length of the struciure



3. GENERAL ASSUMPTIONS

Mase distribution and stiffness of the structure does not effect the vibration behaviour of the
soil - it is therefore sufficient to investigate as a first step only the dynamical response of the soil.
_ The deflections of the soil due to an earthquake can be analysed by using the wave propagation
theory. The corresponding vibration model of the soil iz assumed as a infinite horizontal layer
gystem, Only shear wave effect has tc be taken under consideration.

Stress and strain of the structure are then analysed by the assumption that the structure
follows the movements of the soil with only small relative deflections between soil and atructure.

4. DYNAMICAL ANALYSIS OF THE SOIL

Dynamical phenomenons in the soil can be
described by the theory of wave propagation in a
half space. o [HITTITIIIT]

Two groups of waves have to be distinguished :

- Body waves '

- Burfice waves

In the group of the body waves (see Fig.1). we
know shear waves respeciively S-Wave and com- b)
pressional waves respectively P-Wave and in the
group of the surface waves we distinguish Rayleigh-

“Wave and Love-Waves. —_—
he influence of the surface waves is limited I

of asblasively eoall aron B the fowring osen ©) ST T

suggestion surface waves are therefore neglected.

_ In case of shear-waves, soil particles move A

perpendicular to the wave propagation. The cor- + direction of wave propagation
rezponding stress sirain state is of pure shear; the : —+ direction of soil movements
material does not cha.pge_s its volume. Fig. 1. Demonstration of the body waves at a single bar

a) bar at rest, b) shear wave/S.wave, c) compressional wave/ P.wave

‘ 8y :
In case of compressional waves, soil move- - a) P ﬁdzdydz
ment3 and wave propagation have the same direc- '
tion. The corresponding state of stress and strain ' X
is axial. The elements of the soil are stretched and ' - ~xu
compresgzed. , [ o
Due to the different wave velocities compres- Toydydz l (-rgy + -a—"'!-da:) dydz
sional waves are much faster than shear waves. R ”
This means that S-Waves and P-Waves do not l
affect the structure at the same time. wv
On the other hand the movements, corre-
sponding to the shear waves are much bigger as b)
in case of compressional waves. .
For practical investigations it is therefore suf- —-—
ficient to consider only shear wave effect. Utdydz
The differential equations of the wave pro-
pagation [4] in a solid body can be found by the tv ' (a’,
equilibrium of the d’Alembert forces (Fig.2) and - A
the alteration of the elastic state of stress. -

T X, U

do fem
‘o, Ly

+ 32 dx)dydz

dzdydz

_ Fig. 2. Equilibrium condition at a soil element
a) pure shear wave action, b) pure compressional wave action
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In equations (4.1) and (4.2) ¢, and ¢, means the shear ‘wave velocity and the compressional

wave velocity
Cy = g— (4.3)
P

cp = \/E . (1-u) (4.4)

P+ (120

(4.1)

(4.2)

Equation (4.5a) is a solution of (4.1). In this expression the wave length X, can be substituted

by A = ca/fn--

v =g, sin %E(:n —c,t) (4.5a)
v =y, sin 21 fn (z — cst) {4.5b)

Ca

To describe the complete shape of the shear wave we have to determine a displacement vg n
and a frequency f,. . '

To calculate the displacement and the frequency caused by shear deformations, the soil can be
modeled as an infinite layer system (2, 3](Fig. 3). This layer system can further simplified as 2 shear
beam. If we want to use conventional computer programms the shear beam can be substituted
by an flexural beam with the bending stiffness B;, lumped masses N; and the condition that the
angel of rotation at each node is zero.

hZ )

B; = G"i—Z'A (4.6)
A

M; = ‘é‘(ﬂi—lhiu—l + pihi) (4.7)

For the dynamical analysis (Fig.4) the response spectrum method may be used, provided that
a spectrum for the bedrock of the layer system iz available.

N
b
_ -+ - Fig. 8. Vibration model of the goil

a) infinite parallel layer system, b) equivalent shear beam, c¢) equjvalent beam with bendinig fAlexure
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— STRUCTURE
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n-th Mode
F 29 4. Dynamical analysis of the soil

The acceleration of a certain mode is found by the following, well known expressions.

Gn = ¢nrnsc(fn:D_n) . (4'8j

Yo,n =‘(2ﬂ_%)—3 (4'9)

5. STRESS RESULTANTS

Stresg and strain of the structure are then analysed under the assumption that the structure
follows the displacements of the soil. ‘

This means, that the deflection curve of the structure is equal to the shape of the wave.

Soil structure interaction has no significant influence on the vibration behaviour of the slender
structure.

In case that the wave propagates in the same direction (Fig.5) as the structure (o = 0],
the stress resultants are found from the product of the bending stiffness of the structure and the
corresponding derivations of the shear wave displacements.

—» wave -Front

o
°l
s
e X
X
of
x!
Y
\ x -
Fig. 5. Propagation direction of the wave front
‘ 9 .
Mn = :l:(E J)B 1)(Il,ﬂ. (c_wfn) (51)
)
2 3
Qn=%(E J)5 von (-5 ) (5.2)
9 4
P = i(E J)B Yo,n (c_ﬂ-.fn) ' (5'3)
s
N =0 (5.4)




The so far described method works under the assumption, that the elastic foundation between
soil and structure is stiff enough, that there occur no relative displacements between soil and
structure. Soil - strucirure - interaction iz of minor influence.

The relation between the displacement of the soil and the displacement of the structure (Fig. 6)
can be estimated by the following equation

£= 0.0026( ) - __ 635) -
7

von 1+00026( )

with
(EJ)p
G

The corresponding parameters are the wave length A and the characteristic length L, which
is describing the elastic foundation between the structure and the soil.

L= (5.6)

Bedding Force 0174

1 2 3 5 An/L

Fig. 6. Soil structure interaction

This equation is derived by imposing the soil a statical sinus shaped deflection and the distri-
bution of the bedding forces are also sinus shaped.

With this equation the influence of higher modes can be estimated very easyly

Higher frequenmes yield to a shorter wave length. For ratios A/ L less than 3 the displacement -
of the structure is less than 20%. In this case the scil displacement w1]l not be transmitted on the
structure. The stricture remains in rest.

The stress resultants can be significant reduced and influenced by the arrangement of joints.

In a joint the bending moment vanishes while shear forces usua.lly can be transmitted by the
joint construction.

The influence of joints can investigated by uging a beam on elastic foundation.

If for instance the distance of the joints is a quater of the wave length (see Fig.7a) we will
find the reduced stress resultants by superponing the systems (4.1) and (4.2).

With the diagrammas of Fig.7 (b} and (c} the reduction factors for bending moments ns
and for the shear force at the joint ng can be found. The corresponding parameters are the wave
length the characteristic length L and the distance £ between the joints.

The calculation may be carried out by the following steps:

{1) Calculation of the stress resultants of an infinite structure and for the individual modes
acc. to chapter 4 and 5

M.=£(E ), 5 (5.7)

21rf,,

Qo = =(E J), an | (5.8)

Modes with a ration A/L less than 3.0 may be neclected
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Fig. 7. Reduction of stress resultants due to jointe
a) superposition method for bending moments, b) reduction for bending moments, ¢} reduction for shear

forces at the joints

(2) In case of joints the reduction factors nar and ng may picked up from the diagramms

of Fig.7.

red M, = M, nu (5.9)
red Gon = Qo,n 79 (5'10)

(3) Superposition of the individual modes. The simplest and most popular suggestion for
this superposition is the square root of the sum of the squares.

m';x, r%d M=/ (red M,)? (5.11)

max, red Qg = ‘ /Z(red Qo,n)? (5.12)

The movements of the joints can be rough estimated by the following equations (see Fig. 8)

. (5.13)
(5.14)

The joint construction must be able to resist this movements.
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Fig. 8. Movement at the joints
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TINH cAc KET CAU 6NG TRONG DAT
DUG1 TAC DUNG CUA DONG DAT

Tac gid nghién céu sy 1am viée cla cic k&t cfu Ong nim trong ong ddt dwéi tic dung cda
dong ddt. & day, hé che 16p ngang cla 44t dwoe coi nhw nhitng thanh t8 hop chiu cdt, con két
cdu nhw nhitng thanh chju udn. Gih thidt 44t va két cfu ddu lim viéc trong trang thii din hdi.

St dung 1y thuy&t truy2n séng va cdc gid thidt néu trén, tic gik di dwa ra phrong phip tinh
chuyén vi vi ndi huc trong két ciu cdng trinh, d6ng thi chi 18 cdc tham s8 dnh huéng dén ching.
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