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OBTAINING EQUATION SET FOR TWO-PHASE
BUBBLE DYNAMIC DESCRIPTION

DUONG NGOC HAI
Institute of Mechanics, NCNST of Vietnam

§1. INTRODUCTION

One process that is able to produce fast fine scale fragmentation is called thermal fragmenta-
or violent boiling, There are indications that this type of fragmentation is due to the explosive
nrisation {a microexplosion) of small amounts of coolant that are injected into the fuel drop by
: hydrodynamic instability that develops when the bubble surrounding the fuel drop collapses
xr the action of a sharp pressure increase in the surrounding coolant.

Previously two types of models had been applied to the problem: -

* models that describe the thermal conditions in the vapour film but assume spherical sym-
-y which is quite obviously inappropriate and

* a model that allows for ellipsoidal droplets and bubbles with an arbitrary height of the
let within the bubble but does not take into account thermal effects and thus vapourisation
te bubble wall.

Improving existed models, taking into account thermal effects and vapourisation at the bubble
and rotational symmetric shape of droplets and bubbles the aim of present work is obtaining
:quation set for two-phase bubble dynamic description and some important estimations. With
'd to one-phase gas (with or without phase transition) bubble dynamics and dynamics of

ure of fluids with these bubbles it can be seen in publications, for instance, by Plesset M. S.

Prosperretti A, (1977) [6], Nigmatulin R. I, Duong Ngoc Hai et al. (1988, 1991) [4, 5] or
ren Van Diep (1993} [3] and in the cited there literature. :

§2. MAIN ASSUMPTIONS

The dynamic of two-phase vapour-drop bubble
nsidered in spherical coordinates, assuming ro-
nal symmetry (Fig. 1) and under the following
lified assumptions:

(i) the drop is rigid and fixed in position;

{ii) the collapsing liquid is incompressible and
:id;

[iii) heat is transferred through the vapour film

- thermal conduction (assuming the vapour
at rest); :
- thermal radiation (assumming parallel #at

ces);
iv) the compressibility of vapour is modeled by
ing it as a polytropic gas. ‘
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§3. OUTSIDE LIQUID FLOW

For an incompressible liquid and vortex-free flow the velocity potential &(r, ,t) can be intro-

duced:
=V, V3@ =0, (3.1)

(vz—r_lz.air( Bar)-‘—rzslinﬂaaﬂ( 65%))

where @ is a velocity vector; r is a radial coordinate; 4 is a polar distance. The subscript £ refers
to the parameters of liquid.

In order to obtain a well-posed problem for partial differential equations (3.1} an initial and
two boundary conditions must be presented. Initially the collapsing liquid generally proposed has
some velocity field:

t= 0, !Ig = ﬁ'go. ' (32)
The first boundary condition is an inquiry for liquid velocity at infinity:
r — oo, the — g (3.3)

“and the second one is a condition for normal stress on the bubble wall that can be derived from
the Bernoulli (momentum) equation:

d9 1
pe+ pegeostd = “pe(—é’? + EVQ . V‘I’) + Poo (t) ' (3.4)
and has the follcswing form:
9% __1 vq> V® — gcosh — ——-’”ﬁ!ﬂ
at pe
2
1+2(16Rb) _l_aRb {— laRbcosﬂ
e Fy 98 ) _ Ry 997 R, 90 snf (3.5)
peRy 1 9R,\213/2 1 3Rn\H2 [ :
[H(R,, ae)] [1+(R,, aa)]

where p and p are pressure and density, respectively; g is gravitational acceleration; o is surface
tension coefficient; R, is bubble radius; ¢ is time. The subscripts ¢ and co refer to parameters of
gas and at infinity, respectively.

It should be noted that & = @(r #,t) therefore on the phase-interface:

3% 3P 0OR, )
=St (35)

§4. INSIDE GAS FLOW

4.1. Mass conservation equation

The vapour in the annwlar gap between a hot drop and surrounding liquid is considered in the
framework of one dimensional tangential flow. Within the framework of this simplification consider
the geometrical body bounded by the drop surface, bubble wall and conical segments at angles
¢ and ¢ + Af. The vapour amount contained in this volume can be calculated by the following
integral:

2nr 0+ A8 Ry
dM = [ f f pgl8,t)r sin fdrdodp =
o 0 Ry
RY — R '
= pg(d, 1} ~2——2 27 sin 6df + 0((d4)*), (4.1)
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where Ry is a drop radius.
The mass flux czine into the volume due to the vapour flow through two conical segments
surfaces at angles 6 and # + Af has the following form:

2x Ry 2r Ry

ffpgugrsmﬂdrdqﬁ d8+ffpgugrsin3cird¢!9 =

0 Ra 0 Rg
2r Ry

= —df— / / pytgr sin 6drdg +0((d8)?) =
0 Rg

3 2

=—df (pgugZ‘Jrsm 8

and the mass flux due to phase iransfer has the form:
2 9+-df _ ' :

ddm = f f RS sin 6dfdp = jRy 2w sin 6dd +0((d6)*), (4.3)

by T | ‘

where j is a phase transition rate per interfacial surface unit.

The conservation of vapour mass in the considered volume means:

‘—%(dM) = dPp, +dJp. (4.4)

Substituting eqgs. {4.1)-(4.3} into eq. {4.4) and simplifying the following equation is obtained:

LT NN

RZ - R2
3 sind 36 ( 2 “pugsin 19) =ik (45)

4.2. Relation between vapour velocity and pressure gradient

Let suppose that the variation of vapour velocity with time is small compared to the variation
with respect to spatial coordinates. In addition let also that the inertial terms are small compare
to the viscous terms, i.e. fow vapour Reynolds number. The equations of mass and momentum
(Navier-Stokes equation) conservation have the following forms, respectively:

8
%9 4 V. pgity = L4V iy = 0
a3t - dt ) ( 4 6)
dd, = )
po—, =paf +V Py,

where F iz an external force vector, P, is a tension tensor:

B =y 4 2 (e~ S8,

Bu’
e = g) .
0. 5(6:1:J 3:1:") ’ .
A=e¢*=V.g,; §7=0, wheni#; and 6 =1, wheni=7j.

When gas dynamlcal viscosity does not depend upon coordinates t.he second equation of (4.6}
can be rewritten in the following form:

dil, '
Pa _ng v Pa""l‘a(v g + V(V uﬂ')) (4.7)
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Or due to rotational symmetry in two dimensional r and f coordinates these equations have
the following forms:

dp, 1 1 .
kg = = 8) =
a P ar(" potor) ¥ 5 50 35 (s 09
dpy 1 1 ] 0
= dt te [ 2 3r (r gr}+rsmﬂ ag(uggsmﬂ} 0
Ougr | . ugﬂ dpy
Tugy — ) = — 9 Loy
Pg( at F g Vilgr r ) Pegcos ar (4_3)
+p [Vzu —Eﬂ——i———(u gsxn9)+1—(V i, )] o
g ar rZ r231n9 ET RN g
du UgrUge 1 3
2 Bu.g Ugg 18
T P L el V . ],
tHy [V %0+ 5 " end T 3790\ ”*’)
where: 13 1 5
V.4, = -;é-a[rgug,) ey — (ugp sin §)

and the subscripts r and # refer to radial and azimuthal directions, respectively.
From the first equation of (4.8) we must get:

uge sinf = Q(r).- (4.9)

And the second and third equations have the following forms:

gcosﬂ+-—~%&—— —WLB:(),
19 ar G} a (4.10)
Pg Hg 2 TUge
=T M (27 o,
gsind = %6 T p,r? or ("52)

From the first equation of (4.10) the following dimensionless equation can be obtained:

ap 5 g
—5}—_?- =nM?L-LY —Gcos ¥, (4.11)
where: B, = py/po; 8, = ug/ug; ¥ = r/Ry;
_ (R - R Ruo —
=2 (Mach number); L= (Rso ~ Ruo) ;i 9= 90 — Rao)
0 Ry Po

(a0 is a sound speed).

Usually g < 1, therefore for wide number of cases, when whether flow is under-sonic (M2 < 1)
or the vapour film is thin (L <« 1) the approach p, = p,(#), i.e. gas pressure is uniform over r, is
well satisfied. Neglecting the influence of gravity from the second equation of (4.10) the following

relation can be derived: 5 BQ( )
Pg _ Hy O )
== = .
el TR ( ar (¢.12)
Because r and # are two independent coordinates, therefore two parts of eq. {(4.12) must equal

constant:
BQ(r)) - Ap,
3

T 31' ( ar (4.13)
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where:
Ap, = pg(f = m) — py(¢# = 0) = const.

The solution of eq. {4.13) can be obtained:
A R,R :
Q) = ”’g[ = (R + Ro)| (4.14)

and from egs. (4.9} and (4.14) we have:

Q) Ap, RyRy |
= = — (Ry + R4} . 4.15
ugo(r;9) sinf  2p,sind [r—i- r (B, + d)} ( )
Keeping the constant of mass flow, i.e.:
2nr Ry 2r R ‘
[ PaUger sin fdrdg = f f Pgtigar sin Bdrdd. (4.16)
0 Ry ¢ Ry
and integrating we must have:
£y
o 2 ' .
U,ga = W f ﬂ.ggfdl". . . (417)
Ry

Substituting eq. (4.15) into eq. (4.17) and integrating the following formula is obtained:

Apg(Rb - Rd)2 .

f0(0) = — T (R T R k=e. (4.18)

Taking into account eqs. (4.12) and (4.13) from eq. (4.18) the following relation is obtained:

- (Ro — Rq)? dp,

— , 9Py 419
e T Tk (R + Ra) 99 (4.19)
‘Also from eq. {4.18) we have:

Ap, - _lzi‘gige .
R A8 27

h=R,— Ry R=05(R,+Ry) (4.20)

and at § — co, RAf ~ Az the relation (4.20) leads to the form for Poisseuille ﬂow between two
infinite parallel fat surfaces.
Caldarola {1972) [8] used the following expressions for vapour velocity:

—cos @
sinf

35 R R
ugo(r, 8) = — e [ + =

r
?rpg(Rb - Rd)3
dpy _ 3pg(l~ cosf)rny,
déd mpgsin8(R, — Ra)®’

— (Ry+ Rd)] o)

where thy = dm,/dt is a total vapour production rate.
Substituting the first formula of eqs. (4.21) into eq. {4.16) and integrating we can received
the following form:
my(1— cosf)
mpg(R — R3)sind

oo (6) = (4.22)
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Excluding s from eq. (4.22) using the second formula of (4.21) the similar to (4.19) relation
is obtained with k = 3.

4.3. Closed relations. Initial and boundary conditions for gas flow
To close the system of dynamical equations for gas the polytropic law is used:

Po = Poolpalow)” o po=pyo(pa/peo)'’™, (4.23)

where n is polytropic coefficient. ‘
The rate 7 of mass transfer per interfacial surface unit (7 > 0 for vapourisation and j < 0 for
condensation) is found from heat balance condition on the bubble walk

i=(gg+qe+a) teqr ' (4.24)

here g4, g¢ and g, are heat fluxes to i terfacial surface from vdpour, liquid and due to radiation,
respectively: 7
g = Ag(Ta— T.}/(Rs — Ra);  qe= —2e(To — Te) /65
¢ = Be(T3 — T}).

where T and A are temperature and thermal conductivity, respectively; £is latent heat; § is thermal
boundary layer thickness in liquid; B is Stefan-Boltzman coefficient; ¢ is emission coefficient. The
subscript s refers to parameters at saturation.

The relation between saturated temperature and vapour pressure is determined by using
Clausius-Clapeyron equation:

(4.25)

d7, T, Pg o
= —={1-= 4.26
dpg ’ ng ( pg) ( )
and the value of effective latent heat is determined by: ‘
boy = £+0.68¢,(Ts—T,) . (4:27)

following Bromley 1952 [1}, Rohsenow 1956 {7]. _
The set of egs. (4.5), (4.23)-(4.27) has the following initial and by virtue of symmetry two
boundary conditions: :

t=0, pgl0,0) =pgoll); pg=rpg(f); ug=rump(f); w26)
_ 3pg _ o _ dpg 4.28
§=0, 55 = O 6__“-' 30 = 0. |
It should be noted that the initial values pyo(f), pyo{f) and uyo(f) are determined prior to
time dependent calculation by requiring force balance between the pressure distribution in vapour
film and the drop weighi. In this calculation the pressure at the top is kept constant and equal
Pge that could be explained by releasing at this area vapour bubbles.

§5. DEFINITION OF MOVING INTERFACE

The condition of ma.ss. continuity over moving interface described by Ry = Ry(4,t) has the
following form: '

7 = pe(Xini — (uns)e) = —po(Xjn; — (uinj)). (5.1)
Under conditions far from critical usnally j/ps < 1. In this case the presented above equation

leads to the condition that the normal liquid velocity at bubble surface equals the bubble wall
velocity and can be used to determine the time evolution of interface:

dRy (3@ 1 39 BR;,) '

& ~\or Vo0 ar 632)
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Eq. (5.2) has a simple initial condition:

Ro(8,0) = Ro(6). (5.3)

The system of egs. (3.1)-(3.3), (3.4)-—(3.5),7(4.5)‘, (4.19), (4.23)-(4.28), (5.2)-(5.3) is closed and .

can be used to describe the presented above problem of two-phase vapour drop bubble dynamic.

§6. SOME ESTIMATIONS

6.1. Role of subcooling
Consider the following ratio:

= A!(Ta _Too) (Rb—'Rd) .
% 5 A (Ti—To)

(6.1)

where § =~ /Dyt and D is thermal diffusivity.
For example, for water we have:

- Ty — Too J{Ry — Ry) ‘

w102 T : 6.2

o (Ts — T,)V/10¢ (6.2)
For the case of (T, — Teo} ~ 10K; (Ta— T,) ~ 10°K and (Ry ~ Rg) ~ 107 mm (6.2) leads to

the following relation: : , .

— 101

T~ Vot _
which means that g, will be smaller than 1, when ¢ > 1ms, i.e. heat loss from the subcooling
due to increasing the surrounding pressure will be negligible in comparison with heat transferred
by thermal conductivity when the thermal boundary layer in liquid is dick enough. It should be
noted that in reality the thermal houndary layer thickness in liquid could be strongly changed
dependently on the bubble surface dynamic: this layer becomes thinner in the expansion phase
and larger in the compress phase.

(6.3)

6.2. Role of radial convective heat transfer

Consider the ratio between two items presented respectively convective heat transfer and heat
transfer due to thermal conductivity in equation of the vapour energy conservation in spherical
symmetric approach:

u aT
- UM )
QL‘ - &i(rzgz) . (6'4‘)
r? dr dr
For water we have:
: T, ~ 10%(Ry — R)ugr. . (6.5)

In the case of (R, — R4) ~ 107 'mm in according to (6.5) g, will be smaller thar 1 when
u, < lm/s, i.e. the radial convective heat transfer will be negligible in comparison with heat
transfer due to thermal conductivity when the gas motion is low (v < 1m/s).

6.3. Role of radiation heat transfer

Consider the ratio between two items presented respectively radiation heat transfer and heat
transfer due to thermal conductivity:

B, — Ry

g, = Be(T] ~ 1’34)5;(“11;_—3::)‘ :

(6.6)
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For the case of an alumina drop in water [2]: A, ~ 0.08 W/mK; & ~ 0.3 therfore we have:
G~ 4x 1077T3{R — Ra). (6.7)

In the case of Ty ~ 1500+ 2000K g, will be ~ 1, when (R, — Rg) ~ 1mm, i.e. for the vapour
film thickness with order of 1 mm heat transfer due to radiation and due to thermal conductivity
will be approximately the same. If the vapour film thickness is more than 1mimn the heat transfer
due to radiation will be dominated.

6.4. Quantity of vapourisation liquid
Let congider a spherical approach. The total quantity of over-heats in relation to surrounding
medinm contained in the drop can be calculated:

. .
Qu= "‘JrRipdcd(Td, - T,). (6.8)

The quantity of heat transferred from hot drop to surrounding medmm can be estimated in
the following way:
Qg = 4:WRb qgt- (6.9)

Consider the following ratio:

5. Qo __ Bt .
97 Qs pacdRa(Ry — Ra)

(6.10)

Let as above consider the case of water. The relation (6.10) leads to the following estimation:

_ 10-1

Qy~ 1OGRd(Rb—R.1)’ (6.11)

* And for the case of R4~ 1mm and (R, — R4) ~ 0.1mm @, will be less than 1 when ¢ < 1s. This

means for the short processes with ¢ < 1s the drop temperature can be proposed to be constant.
Let estimate the quantity of vapourized liquid during process. The quantity of 1n1tla.]ly existed
vapour in the gap can be calculated in the following way:

Mo = Sn(E3 ~ E)ogo. (6.12)

The quantity of vapour produced during process can be estimated:

4rRiq t

AM; ~ )

(6.13)

And the ratio of new produced vapour quantity to the initially existed vapour quanfity can be

obtained:
AM, A (Tu-T)
Mo pgdﬂ (Rb bl Rd)2

AM, = (6.14)

For the case of water we have:

e I M }t :
AM,~ 10 TW : (6.15)

And if (Tqa - T,) ~ 10° K and (B, — Ry) ~ 0.1lmm, AM, will be less than 1 for processes
with ¢ < 0.1ms, i.e. vapour production due to heating will be important for the processes with

t > 0.1ms. The estimation for pressure increasing due to the local vapourisation can be obtained
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using {4.23). It is should be noted that the bubble volume can be changed due to a motion of
bubble surface.

§7. CONCLUSION

Basing on the general thermo-, gas- and hydrodynamic laws the equation set for two-phase
bubble dynamic description and some theoretical estimations are obtained. The model taking into
account thermal effects and thus vapourisation at the bubble wall is extended for the case of droplets
and bubbles with rotational symmetric shape. It is the next step-forward to understanding the
process that seemis to be simple enough at the first consideration, but indeed, is very complicated
in terms of coupling thermo- and hydro-dynamic, multi-parameter and spatial {multi-dimensional)

“problem with moving bounda.ry and possible physn:ai instability and ete.
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THU NHAN HE PHUONG TRINH MO TA
" PONG LUC HOC BOT HAI PHA

Trén co s& nhirng quy lust chung cida nhiét thiy khi déng lwe hoc trinh biy k&t qui thu nhin
hé phwong trinh déng kin c6 thé ding 3¢ md t4 déng lwe hoc bot hai pha vi mét s& d4nh gis Iy
thuy&t. Mé hinh mé& réng cho trwdmg hop hat va bot trdn xoay cé xét dén cic hidu dng nhiét vi
sw bay hoi trén bién pha. Diy 1A bwéc tiép tién t&i tim hidu mét hién twong twdng nhw don gidn
nhwng thwe ra rit phl’rc tap do sy lién hé chit ché giita cdc qud trinh nhift v thiy d5ng lwe hoc,
do tinh chii da tham 86 va tinh khong gian cta b todn, ngodira cdn cd bién di dong va cé thé
¢4 kha ning mat 8n dinh vt I¥ va v, v.,
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