
p chi CO' h<;>c Journal of Mechanics, NCNST of Vietnam T. XVII, 1995, No 2 (14- 22) 

OBTAINING EQUATION SET FOR TWO-PHASE 
BUBBLE DYNAMIC DESCRIPTION 
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§1. INTRODUCTION 

One process that is able to produce fast fine scale fragmentation is called thermal fragmenta­
orviolent boiling. There are indications that this type of fragmentation is due to the explosive 
.urisation (a microexplosion) of small amounts of coolant that are injected into the fuel drop by 
' hydrodynamic instability that develops when the bubble surrounding the fuel drop collapses 
!I" the actio~ of a sharp pressure increase in the surrounding coolant. 
Previously two types of models had been applied to the problem: · 
* models that describe the thermal conditions in the vapour film but assume sphericalsym­
y which is quite obviously inappropriate and 
* a model that allows for ellipsoidal droplets and bubbles with an arbitrary height of the 
let within the bubble but does not take into account thermal effects and thus vapourisation 
te bubble wall. 
Improving existed models, taking into account thermal effects and vapourisation at the bubble 
and rotational symmetric shape of droplets and bubbles the aim of present work is obtaining 
~quation Set for two-phase bubble dynamic description and some important estimations. With 
cd to one-phase gas (with or without phase transition) bubble dynamics and dynamics of 
ure of fluids with these bubbles it can be seen in publications, for instance, by Plesset M. S. 
Prosperretti A. (1977) [6], Nigmatulin R. I., Duong Ngoc Hai et al. (1988, 1991) [4, 5[ or 
ren Van Diep (1993) [3] and in the cited there literature. 

§2. MAIN ASSUMPTIONS 

The dynamic of two-phase vapour-drop bubble 
nsidered in spherical coordinates, assuming ro­
nal symmetry (Fig. 1) and under the following 
lified assumptions: 
[i) the drop is rigid and fixed in position; 
[ii) the collapsing liquid is incompressible and 
:id; 
[iii) heat is transferred through the vapour film 

- thermal conduction (assuming the vapour 
at rest); 

- thermal radiation ( assumming parallel flat 
ces ); 
:iv) the compressibility of vapour is modeled by 
ing it as a polytropic gas. 
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§3. OUTSIDE LIQUID FLOW 

For an incompressible liquid and vortex-free How the velocity potential <.P(r, fJ, t) can be intro­
duced: 

u:, = v<t>, V2 <P = o, {3.1) 

( 
2 1 a ( 2 a ) 1 a ( . a)) 

'17 = y2 ar r ar + r2 sin 0 a0 SID O a0 ' 
where i1 is a velocity vector; r is a radial coordinate; () is a polar distance. The subscript i refers 
to the parameters of liquid. 

In order to obtain a well-posed problem for partial differential equations (3.1) an initial and 
two boundary conditions must be presented. Initially the collapsing liquid generally proposed has 
some velocity field: 

t = 0, ile = ileo· (3.2) 

The first boundary condition is an inquiry for liquid velocity at infinity: 

r _.,co, (3.3) 

and the second one is a condition for normal stress on the bubble wall that can be derived from 
the Bernoulli {momentum) equation: 

{3.4) 

{3.5) 

where p and p are pressure and density, respectively; g is gravitational acceleration; a is surface 
tension coefficient; Rb is bubble radius; t is time. The subscripts g and oo refer to parameters of 
gas and at infinity, respectively. 

It should be noted that <I> = <P(r, 0, t) therefore on the phase-interface: 

d<PI = a<t> + a<t> aR • . 
dt • at ar at 

(3.6) 

§4. INSIDE GAS FLOW 

4.1. Mass conservation equation 
The vapour in the anmmlar gap between a hot drop and surrounding liquid is considered in the 

framework of one dimensionLal tangential flow. Within the framework of this simplification consider 
the geometrical body bounded by the drop surface, bubble wall and conical segments at angles 
0 and 0 + b.O. The vapour a;mount contained in this volume can be calculated by the following 
integral: 

211' 9+1::.9 R~t 

dM= I I I Pu(O,t)r2 sin0drd0d,P= 
0 0 Rd. 

R3 -R3 
=Pu(O,t) • 

3 
d2rrsin0d0+0((d0) 2

), (4.1) 
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where Rd is a drop radius. 
The mass flux came into the volume due to the vapour flow through two conical segments 

surfaces at angles 0 and 0 + t.O has the followiug form: 

211' Rb 2'11' Rb 

dPm =-I I pgugrsinOdrd<P/O+dO + J I pgugrsinOdrd,P/
8 

= 
0 R4 0 R4 

2ft' Rb 

=-dO :o I I pgugrsiu0drd</>+O((d0) 2
) = 

0 R, 

=-dO :o (Puuu2.-siu0 R';; R~.) + O((d0) 2
). 

and the mass ftux due to phase transfer has the form: 

211' B+d9 

dJm =I I iR'tsiu0dOd,P=jR';27rsinOd0-f;O((d0)2
), 

0 • 

where j is a phase transition rate per interfacial surface unit. 
The conservation of vapour mass in the considered volume means: 

(4.2) 

(4.3) 

(4.4) 

Substitutiug eqs. (4.1)-(4.3) iuto eq. (4.4) and simplifying the following equation is obtaiued: 

a (Rg- R~ ) 1 a (R't- R~ . ) . 2 at 3 Pu +sinO ao 2 PgUgsmO = JRb. (4.5) 

4.2. Relation between vapour velocity and pressure gradient 
Let suppose that the variation of vapour velocity with time is small compared to the variation 

with respect to spatial coordiuates. In addition let also that the iuertial terms are small compare 
to the viscous terms, i.e. low vapour Reynolds number. The equations of mass and momentum 
(Ni:wier-Stokes equation) conservation have the following forms, respectively: 

(4.6) 

where F is an external force vector, Pg is a tension tensor: 

pi = -p s'i + 2p. (•'i- !e.s'i) g g g 3 , 

. . (au~ au~) 
e'-J = 0.5 Oxi + Bxi ; 

e. = ekk = V' . ug; s'i = o, when i ., j and s'i = 1, when i = j. 

When gas dynamical viscosity does not depend upon coordiuates the second equation of (4.6) 
can be rewritten in the following form: 

(4.7) 
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Or due to rotational symmetry in two dimensional r and 0 coordinates these equations have 
the following forms: 

where: 
- 1a(2 1a( ") v. Ug = -.- r ... ,) +..,...., a• "•• smO r ar sm ll ll 

and the subscripts r and () refer to radial and azimuthal directions, respectively. 
From the first equation of (4.8) we must get: 

u9o sin 0 = Q(r). 

And the second and third equations have the following forms: 

2 
1 ap9 "•• gcosO+ ---- =0; 

Pa ar r 

1 ap p. a ( 2 au•") gsinO- --• + -•-- r -- = 0. 
PgT ae pgr2 ar ar 

From the first equation of (4.10) the following dimensionless equation can be obtained: 

a-p p u2 

-• =nM2 L..J!....!I..--gcosO 
ar r ' 

uo 
M = - (Mach number); 

ao 

(ao is a sound speed). 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Usually g « 1, therefore for wide number of cases, when whether How is under-sonic (M2 « 1) 
or the vapour film is thin (L « 1) the approach Pa = Pa(O), i.e. gas pressure is uniform over r, is 
well satisfied. Neglecting the influence of gravity from the second equation of (4.10) the following 
relation can be derived: 

sinOapg = &!!..(r2 aQ(r)) · 
ao r ar ar (4.12) 

Because rand 0 are two independent coordinates, therefore two parts of eq. (4.12) must equal 
constant: 

l'a .!!..( 2 aQ(r)) _ t:J. 
r ar r ar - pg, (4.13) 
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where: 
Apg = Pu(B = .-)- Pu(B = 0) =canst. 

The solution of eq. (4.13) can be obtained: 

(4.14) 

and from eqs. ( 4.9) and (4.14) we have: 

(4.15) 

Keeping the constant of mass flow, i.e.: 

211' R& 211' Rt. I I PuliuersinOdrd¢ =I I p9 ugersin8drd¢. (4.16) 

0 R4 0 Rd 

and integrating we must have: 

(4.17) 

Substituting eq. (4.15) into eq. (4.17) and integrating the following formula is obtained: 

uge(B) = (4.18) 

Taking into account eqs. (4.12) and (4.13) from eq. (4.18) the following relation is obtained: 

(4.19) 

Also from eq. (4.18) we have: 

h = Rb- R,; R = 0.5(11, + Rd) (4.20) 

and at R--> oo, RAO ""Ax the relation (4.20) leads to the form for Poisseuille flow between two 
infinite parallel flat surfaces. 

Caldarola (1972) [8] used the following expressions for vapour velocity: 

(4.21) 

where mg = dm.fdt is a total vapour production rate. 
Substituting the first formula of eqs. (4.21) into eq. (4.16) and integrating we can received 

the following form: 
_ (B) m.(l-cosO) 
"•• = .-p.(R~- R~) sinO 

(4.22) 
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Excluding m from eq. (4.22) using the secon~. formula of (4.21) the similar to (4.19) relation 
is obtained with k = 3. 

4.3. Closed relations. Initial and boundary conditions for gas flow 
To close the system of dynamical equations for gas the polytropic law is used: 

Pu = PgO(Pu/Puot or Pu = PgO(Pu/Puo) 1ln, 

where n is polytropic coefficient. 

(4.23) 

The rate j of mass transfer per interfacial surface unit (j > 0 for vapourisation and j < 0 for 
condensation) is found from heat balance condition on the bubble wall: 

j = (qg + q, + q,)ft.., (4.24) 

here qg, ·iu and qr are heat fluxes to U terfacial surface from vapour, liquid and due to radiation, 
respectively: 

q• = >-u(Td- T,)j(Rb- R•); 

q, = Be{Tt- Ti). 
(4.25) 

where T and). are temperature and thermal conductivity, respectively; lis latent heat; 6 is thermal 
boundary layer thickness in liquid; B is Stefan-Boltzman coefficient; e is emission coefficient. The 
subscript s refers. io parameters at saturation. 

The relatiol). between saturated 'temperature and vapour pressure is determined by using 
Clausius-Clapeyron equation: 

(4.26) 

and the value of effective latent heat is determined by: 

t •• = t + 0.68cg(Td- T,) (4.27}. 

following Bromley 1952 [1], Rohsenow 1956 [7]. 
The set of eqs. (4.5), (4.23)-(4.27) has the following initial and by virtue of symmetry two 

boundary conditions: 

t = O, Pu(O, 0) = PgO(O); p9 = PgO(O); u9 = ug<J(O); 

• = o, ap. = o· • ,. " ae ' "= ' 
(4.28) 

It should be noted that the initial values Pg<J(O), pg0(8) and u90 (0) are determined prior to 
time dependent calculation by requiring force balance between the pressure distribution in vapour 
film and the drop weight. In this calculation the pressure at the top is kept constant and equal 
Puo that could be explained by releasing at this area vapour bubbles. 

§5. DEFINITION OF MOVING INTERFACE 

The condition of mass continuity over moving interface described by R. = Rb(O, t) has the 
following form: 

j = pe(X;n;- (u;n;)t) = -p.(X;n;- (u;n;)u)· (5.1) 

Under conditions far from critical usually jf Pt < 1. In this case the presented above equation 
leads to the condition that the normal liquid velocity at bubble surface equals the bubble wall 
velocity and can be used to determine the time evolution of interface: · 

dR• _ (aw _!._ aw <JR•) 
dt - ar + 11£ ao ao 
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Eq. (5.2) ha.s a simple initial condition: 

Rb(O, 0) = Ro(O). (5.3) 

The system of eqs. (3.1)-(3.3), (3.4)-(3.5), (4.5), (4.19), (4.23)-(4.28), (5.2)-(5.3) is dosed and 
can be used to describe the presented above problem of two-phase vapour drop bubble dynamic. 

§6. SOME ESTIMATIONS 

6.1. Role of subcooling 
Consider the following ratio: 

where 6 "' VlfJ and D is thermal diffusivity. 
For example, for water we have: 

_ ~ 105 (T,- T=)(Rb- Rd). 
q, (Td- T,)Vffit 

(6.1) 

(6.2) 

For the case of (T,- T=) ~!OK; (Td- T,) ~ 103K and (Rb- Rd)- w-1 mm (6.2) leads to 
the following relation: 

(6.3) 

which means that 'ie will be smaller than 1, when t <:: 1 ms, i.e. heat loss from the subcooling 
due to increasing the surrou!lding ·pressure will be negligible in comparison with heat transferred 
by thermal conductivity when the thermal boundary layer in liquid is dick enough. It should be 
noted that in reality the thermal boundary layer thickness in liquid could he strongly changed 
dependently on the bubble surface dynamic: this layer becomes thinner in the expansion phase 
and larger in the compress phase. 

6.2. Role of radial convective heat transfer 
Consider the ratio between two items presented respectively convective heat transfer and heat 

transfer due to thermal conductivity in equation of the vapour energy conservation in spherical 
symmetric approach: 

(6.4) 

For water we have: 
(6.5) 

In the case of (Rb - Rd) w- 1 mm in according to (6.5) 'ic will be smaller than 1 when 
Ur < 1 m/s, i.e. the radial convective heat transfer will be negligible in comparison with heat 
transfer due to thermal conductivity when the gas motion is low (u < 1 m/s). r 

6.3. Role of radiation heat transfer 
Consider the ratio between two items presented respectively radiation heat transfer and heat 

transfer due to thermal conductivity: 

- ( • 4 ) Rb- Rd 
qr =Be Td - T, >.a(Td _ T,) (6.6) 
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For the case of an alumina drop in wator [2]: ~.- 0.05 W /mK; s- 0.3 therfore we have: 

(6.7) 

In the case of Td - 1500 + 2000K q, will be - 1, when (Rb- Rd) - 1 mm, i.e. for the vapour 
film thickness with order of 1 mm heat transfer due to radiation and due to thormal conductivity 
will be approximately the same. If the vapour film thickness is more than 1 mm the heat transfer 
due to radiation will be dominated. 

6.4. Quantity of vapourisation liquid 
Let consider a spherical approach. The total quantity of over-heats in relation to surrounding 

medium contained in the drop can be calculated: 

(6.8) 

The quantity of heat transferred from hot drop to surrounding medium can be estimated in 
the following way: 

(6.9) 

Consider the following ratio: 

(6.10) 

Let as above consider the case of water. The relation (6.10) leads to the following estimation: 

(6.11) 

And for the case of Rd- 1mm and (Rb- Rd) - 0.1mm Qg will be less than 1 when t < 1s. This 
means for the short processes with t < 1 s the drop temperature ca.n be .proposed to be constant. 

Let estimate the quantity of vapourized liquid during process. The quantity of initially existed 
vapour in the gap can be calculated in the following way: 

(6.12) 

The quantity of vapour produced during process can be estimated: 

(6.13} 

And the ratio of new produced vapour quantity to the initially existed vapour quantity can be 
obtained: 

(6.14) 

For the case of water we have: 

(6.15} 

And if (Td- T,) - 103 K and (Rb- Rd) - 0.1mm, l:>Mg will be less than 1 for processes 
with t ~ 0.1 ms, i.e. vapour production due to heating will be important for the processes with 
t > 0.1 ms. The estimation for pressure increasing due to the local vapourisation can be obtained 
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usmg (4.23). It is should be noted that the bubble volume can be changed due to a motion of 
bubble surface. 

§7. CONCLUSION 

Basing on the general thermo-, gas- and hydrodynamic laws the equation set for two-phase 
bubble dynamic description and some theoretical estimations are obtained. The model taking into 
account thermal effects and thus vapourisation at the bubble wall is extended for the case of droplets 
and bubbles with rotational symmetric shape. It is the next step-forward to understanding the 
process that seenis to be simple enough at the first consideration, but indeed, is very complicated 
in terms of coupling thermo- and hydro-dynamic, multi-parameter and spatial (multi-dimensional) 
problem with moving boundary and possible physical instability and etc. 
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THU NHAN Hfu PHT.TONG TRINH MO TA 
DQNG LVC HQC BQT HAl PHA 

Tren w s.Y nhirng quy lu~t chung ella nhi~t thity khf dqng l\fc hQc trlnh bay ke't qua thu nh~n 
h~ phll'O'llg trinh d6ng kin c6 th~ dung d~ mo ta dqng hrc h9c b9t hai pha va mgt s/l danh gia Jy 
thuye't. Mo hinh m& rgng cho tnrlmg hgp h~t va bQt trim xoay c6 xet de'n cac hi~u ling nhi~t va 
sv bay hoi tren bien pha. D~y li• btt&c ti<!p tidn t&i tlm hi~u mgt hi~n ttrqng ttt&ng nhu dO'Jl gilm 
nh1n1g th\fc ra r~t phfrc t~p do •'!' lien h~ ch~t che giira cac qua trlnh nhi~t va thuy di)ng l\fc hQc, 
do tfnh chO:t da tham .g va tfnh khong gian ella bai toan, ngoai ra con c6 bien di dqng va c6 th~ 
c6 kh! nang mat lln djnh v~t ly va v. v ... 
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