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PARAMETRIC VIBRATION OF THE PRISMATIC SHAFT
WITH HEREDITARY AND NONLINEAR GEOMETRY
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INTRODUCTION

Parametric vibration of the prismatic shaft with regard of physical and geometrical nonlinear-
_ ity has been investigated in some publications (see for example |1, 2, 4, 5]. However, that vibration
in the case of hereditary has not, to author’s knowledge, been examined hitherto. In this paper it
will be studied by means of the asymptotic method for high order systems.

1. FORMULATION OF THE PROBLEM. THE EQUATION OF MOTION

‘Let us study parametric vibration of shaft of the length £ supported in horizontal position as
shown in fig. 1 and acted on the longitudinal periodic force. Supposing that the nondeformed axis
‘of the shaft coincides with axis Oz, while the symmetric axes of the cross-section are parallel to
the fixed axes Oz and Oy. In addition the origin of the coordinates is selected on the shaft’s left
end, see fig. 1.

Fig. 1

Transferences at points of the axis Oz in the direction of axes Oz, Oz are expressed by
functions W(z,t), U(t). Neglecting the imertia of rotatory motion and the displacement, the
equalions of the considered boundary value problem are
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Here M(z,t) is bending moment of cross-section, F - its area, p - specific mass, N - normal
force, Q} - cross force.
The equation of state is accepted in [11]
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where a1, a; are the constant characteristing the properties of material [10], K{t — 7} - function
of hereditary,
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Bending moment M and normal force N are determined by the following expressions
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Here I, I; are the cross-section moments of inertia

I0=ff22dF, I2=[fz4dF,
F F

€o is the lengthener of the shaft’s axis [10]
U | 1/W
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Neglecting the longitudinal inertial force pF-~— and influence of the cross force @, we have

-from the equation (1.1) and (1.6) the expression N = N(t)
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Supposing that the nonlinear terms in {1.7) are small enough and applying the successive
approximate method [12] we get
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By substuting (1.8) into the expression (1.5) and then into (1.2), after simple calculations we
obtain the equation of motion of the boundary value problem
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The boundary conditions are approximately of the form
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2. CONSTRUCTION OF SOLUTION

We shall find the solution of the given boundary value problem by the help of the asymptotic
method. In the first approximation the partial solution of the equation (1.9) with the boundary
conditions (1.10) is found in the following forms:

W{z,t) = y(t) _sin %ﬂi . (2..1}

Puting (2.1) into (1.9) and applying Galerkin-Bubnovs method, we receive
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where
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It is noted worthy that the term %——2— in the equation (1.9) vanishes when the coordinate =
T
is equal to £ or zero,
It is supposed that the function K(t — r) and the force P(t) are of the following forms

K(t — 1) = Qoe~ (-7, - (2.3)
P{t) = Pysinnt, . (2.4)

here Qo, Pp, « are positive constants Putting the expressions (2.3}, (2.4} into equation (2.2) we
have ‘
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Differentiating the equation (2.5) with respect to argument ¢t we get affter simple calculations
the differential equation of third order
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This equation will be solved by the asymptotic method [2]. Let’s consider the case, when 8,

Bo, fa; fs are small quantities of first order so that
Pr=cBy, Br=¢h; Ps=¢efs, Pi=¢eb,.

We shaul dea! with the oscﬂlatlon in the resonance case, when there exists the following relatlon
‘between the frequent:les
w = 51 +eb , (2.7)

7, ¢ are integers, § is detuning. The partial solution of the equation (2.6) is found in the form of

Berles
y =acosp+ely(s,9,9) +52U2(a:¢:6)+5 TR (2.8)

here p = (gfyt + 1,0), ¢ = 4t, a, ¥ are the funciions satisfying the following differential equations

d
d: As{a, ¥) + 2 4s{a, ¥) + €°,.
dy (2.9)
y (w - -'y) +¢By(a, ) + ¢°Ba(a, ¢) + &°
It is easy to prove that the resonance occurs when
) .
First of all, let’s investigate the oscillation in the case
p_1
pha (2.11)
In the first approximation we have
y = acosp = acos (11t+¢), (2.12)
—_—= a[h;aqr P cos 2¢]
dxb 7 .
oy = a[(w2 - ?) - sz ~2hw? — Ry + Py sin 2¢]. (2.13)
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Stationary solution ag, %o of the system of the equations (2.13) is determined from relations
ag(hioy — Py cos 2¢) = 0, _ .
aof (w? - i’;) ~ 5,03 — 2haw? — Ry + Py sin 29 = 0. (214

Eliminating the phase in (2. 14), we get the equation of resonance curve for non-trivial sta-
tionary oscillation

M(4%,7%) = [43+ +L S (zhi -1+ D] +B%®n? - C* =0, (2.15)

From here we obtain

2
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where 3 2 2 2
A2=51110 ﬁg_")' sz_{)l_ Dz_}ﬁ-_. BZ=£‘1.
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To study the stability of the stationary oscillation, we =et in (2 18)a=ay+6a, p=1po+4§ 11:,
where §a, §¢ are small pertubations. Substituting these expressions into equations (2.13) and
neglecting the small quantities of high order, we receive the following variational equations

7% = 2ao P 2in 2489,

db

: (2.17)
a7 = —242816a + 2a0P;1 cos 295 ¢,

Using the Routh - Hurwi’s criteria we get the following stability condition of stationary sclution
— 2agh1 e > 0, ‘ (2.18)

2
B+ +@m-1)+D>0. (2.19)

The first inequality is always sasisfied because o > 0, hy < 0. The second one will be realized,
when the amplitude AZ takes the values greater than A® lylng on the backbone line corresponding
to the equation

A%+ 24— +{2hi— 1)+ D=0. (2.20)

The relation (2.15) is plotted in Fig. 2 for the case:

C%=0.1, B?>=005 h =-0025 D =005

o? = 0.6 {curve 1); o? = 0.7 (curve 2); o = 0.8 (curve 3).

The fat plots correspond to the stable state of the oscillation where the stability condition
(2.19) is valid.

For the stationary solution ag = 0, the variational equations are of the form

)

Liras {h1ay — Py cos 24)éa,

T 2.1
0= [(w - T) ~9hw? ~ R+ Py sinwo]._
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The stability condition of this solution is

2 2 : .
[L-+ @k - 1)+ D] +d°B%*~C > 0. " (2.22)
From the equation of resonance curve {2.15) when A3 =0, we have
2 2

M(0, %) = [ + (2hy = 1) + D]+ oB%? - C*. (2.23)

I ' ;

(1-2h;—D)—+/(1—2h, -D)2-C? , (1-2hy~D)++/(1—2h;—D)?—C?

552 << S5 .

the equation (2.23) has not solution, the condition (2.22) always is realized. In this case, the .

resonance curve, expressed by the equation (2.16} will be upon or under the axis (OnZ) and the
stationary solution {AZ = 0) is always stability.

Now let’s consider the parametric oscillation for the case p/q = 1. In this case we have the
averaging equa.tlon in the form :

E- = a[hla')r — By(B2 cos 29 + cgsin 21,&1}] ,
(2.24)

20’7% = a[(uﬂ — %) = 510 — hyw? — E“(Co —~ By sin 21{’ + ¢p cos 21,b)] .

where we denote

_ Sﬁzqo - _f_ljg.' 562 _E—— . S
By = 2{w? +d2) Bi=30 Ga=g s Simgehy L=

Fi'om (2.21) we obtain the following equa.tlon for the amplitude of the nontrivial sta.tlonary

oscillation .
A3 = (1= hy) —n® — Dy +1/C} ~ B2a2y? (2.25)
where ' _2
Syal 2 B4(B2 + C3) - k3
2 _ Y18 2 _ 9 I T § 3 _ 2 _ M
Ay=—5, T =5, =" —", =BsCo, Bi=—-

It is seen that the amplitude AZ decreases
and the stability region of the stationary os-
cillation is 2lso narrow in comparigson with the 2
case g = 1/2 [4].

. 3. CONCLUSION 251

1. Where taking into account the leng- g4
thener g5 of the shaft’s axis in the system
investigated there exist three resonance cases, 25
they are not observed fer system having lin- )
ear geometric character. The uliraharmonic
(p/q = 1/2) oscillations are not studied, how- 42
ever, it may be seen that their amplitude and
the stability sone become less in comparision g7
with the examined case.

2. From the figures presented, we can see
that the nonlinear hereditary of material de- g
creases the amplitude of the parametric oscil-
lation, that can be disappeared when va.lue of
a? is sufficiently great. . Fyg. 2
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DAO DONG THONG $O cUA DAM LANG TRU KE DEN -
TfNH DI TRUYEN VA PHI TUYEN HINH HOC

Trong bai bio nay, tdc gid nghifn ciru dao déng théng s& cda dim ling tru cé k& d&n tinh di

truyén cda vit lidu va blen dang dii £ chia truc 46i xéng cia dim.

K&t qui cho thiy rang xudt hién thém ba ché d6 ¢dfng hwéng p/g = 1,2,3 ma trwéc d4 chea

dwgc xem xét,

Khi p/q = 1/2 dwdmg cong céng hwédng di dwoc xiy duyng, sw én dinh cda nghiém dirng di

dwoc khdo sit va c6 thé chon o dd 1ém thi dao ddng théng s8 bién mit.
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