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§1. Il\T RODUCTION 

In dynamics of multibody system the principle of compatibility could be ,used.. setting equations 
of motion in the form of system of differential~algebraic equations. Due to. the fac.~ that the 
constraint conditions are added to the system in the way arbitrary1 the method enables to study 
the motion of the system in various variants with direct computirig nf reaction forces. 

Application of the method in design of a vibration sieve of g1 i nding mac~ine brings goods 
results in simulating process. As known, in technology of vibration grinding it's necessary to realize 
the kinematical conditions between rollers and sieve. But it's only possible if the reaction forces 
as well as other kinetical quantities are known. So as shown below the principle of compatibility 
and algorithms for realizing on computers are very suitable tools for solution of such technical 
application 

§2. PRINCIPLE OF COMPATIBILITY AND .COMPUTER PROGRAM 

Let's study motion of mechanical system with n Lagrangian coordinates q. The s constraint 
conditions of the system could be written in a matrix form: 

gq+go=O (2.1) 

where resp. g0 are matrices of dimension of s X n resp. s X 1 and they are assumed to be functions 
gf t, g ~nd q, 

As shown in [3] equation of motion of system could be written in a matrix form: 

(2.2) 

where T is kinetic energy of the system, Q is matrix n X 1 of generallized forces and R is matrix 
n X 1 of reaction forces of constraints. 

Additionaly we have s another equations from constraint conditions: 

GR+Go = 0 (2.3) 

where G is of dimension s X n and Co of s X 1. These matrices are calculated when the inverse 
matrix of inertia matrix. Christoffel coefficients and potential energy of system are known. 

In order to define uniquely 2n unknowns we should have another (n- s) equations. They 
could be found from the criteria of ideality of constraint (2.1). These equations have a form: 

(2.4) 
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where D is coefficient matrtx: of dimension n X (n- 2). For an automatic generation of equations 
on computer we should have the matrix D uniquely defined in [2] an algorithm for deriving D is 

shown. 
So complete system of equations (2.2), (2.3), (2.4) is prepared for defining 2n unknowns q 

and R.· Generation and solution of the systeh1 on computers require application of some results 
Of numerical mathematics. Among them- we should note: solution on nonlinear algebraic system 
of equatiOris, solution o(differential-algebraic equations by implicit Runge-Kutta·methods [1, 5], 
solution of underdetermined linear algebraic ·system of-equations by Huang algorithm [2, 6] etc. 

As a resu.Jt of theoreti_c~i research one program code was written in Fortran·-77. This was 
tested ·in many ipplicatio~s on 286-, 386- and 486- -based personal computers and showed good 
results. In the next section we will use this technique of approaching to the design .of vibration 
sieve of the grinding ·machine. 

§3. APPLICATION IN SIMULATING MOTION OF VIBRATION SIEVE 

Le't_'s simulate the motion of rollers in the vibration sieve of the grinding machine. 

·The vibration sieve is mode_led by one desk which could -be move verticaly, horizontaly and· 
rotate ~round- its m-ass center. So three Lagrangian coordinates could present its motion: x, y, :f). 

Similaily we-have 3 other coordinates: s (relative motion of roller mass center on the sieve)., u 
(diStance of -Toller mass center from 'the sieve) and rp (angle of roller rotation) for defining relative 
motion· of roller. 

Forced vibration of 2-body system is realized by rotation of the excentricity with angular 
freqUency. The system. _is suppoeted by system of springs and dampers as shown in Fig. 1. 

L 

y 

Fig. 1 

For this dynamical system with 6 coordinates x, y, (), s, u, rp we will have 2 constraint 
conditions [4]. 
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- geometrical: u = canst or ii = 0 

- kinematical: s = np or S = ri) = 0 

(3.1) 

(3.2) 

Using principle of compatibility, described above, we could compute directly the quantities: 
x, y; 8, s, u, rp and Rx, Ry, Re, R 8 , Ru, R. 

It's easy to show that reaction force Ru and R 8 will be normal and tangential component of 
contact force between the roller and the sieve. So the kinematical condition would be satisfied if 
it paied: 

r = R, < 1 (3.3) 
Ru 

For deriving equation (2.2) we should know the kinetical energy and generalized forces. Here, 
we put down these expressions directly: 

1( 2 1( )·2 T = - mo + m1 + m 2)X +- mo + m1 + m2 Y + 
2 2 

+ ~[Jo + J, + J2 + mo~ + 2moe(yo sinwt- xo coswt) + mz(s2 + u2JW+ 
2 

+ ~m2s2 + ~m2u2 + ~J2p2 + [mo{Yo cos e- Xo sine+ e sin(wt +B))+ 
2 2 2 

+ m2s(cos 8 ~ u sin B)]XB + m 2 sin exs + m 2 cos B:i:U~ 

- [mo(xo cos B + y0 sin B-e cos(wt +B)) + m2{sin B + u cos B)]yB+ 

+ m2 cos Byi- m2 sinByu + J2B<P + moew sin(wt + B)x + moew cos(wt + B)y+ 
. 1 2 . . 

+ [Jo + moe(yo sinwt- x 0 cos wt)]wB + ?/ow + m2sBu- m2 uBs 

Q, = -c,(x + y,sin B + bcosB- b)- bx[x + (y,cos B- bsin B)iJ] 

Q" = -cv(Y- x, sine+ a cos B- a) - by[Y + (xb cos B +a sin B)iJ] 

Qe = -m1 g[yo cosB- xosinB + esin(wt +B)]- m2g[scosB- usinB- bsinB]­

- coB - Cx (x + y, sin B + b cos e - b - o-o)(y, cos e - b sin B)+ 

+ cy(Y- x,sinB + acosB- a)(x,cosB +a sin B)-

- cy(Y- x, sin B + acosB- a)(x, cos B +a sin B)-

-boB- bx[x + (Yb cosB- b sin B)B](yb cos B- b sin B)+ 

+ by(Y- (xb cos B +a sin B)B(xb cos B +a sin B) 

Q$ = -m2g sine 

Qu = -m2g COS f) 

Q., = 0. 

(3.4) 

{3.4a) 

{3.4b) 

{3.4c) 

(3.4d) 

{3.4e) 

( 3.4f) 

In these expression there are some symbols denoting parameters of vibrating model: the 
weights m 0 , m 1 , m 2 , moments of inertia Jo, J1, J2 and some dimensions of model: x0 , y0 , Xc, Yc, 
Xb, Yb, a, b. 

The simulating on the computers enables to choose the parameters and working conditions, 
e.g. radius of roller, weight of the sieve and roller, amplitude of vibration forces, working frequency, 
parameters ·of springs and dampers etc. 

In order to control the conditions (3.1), (3.2) we can, for example, choose these parameters: 
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m1 = 400kg, J1 = 200kgm2 

m2 = 0.5kg, J2 = 0.25 · 10-4 kgm2, r = 0.1m 

mo = 1.27kg, Jo = 0.127 · 10-3 kgm2, e = 0.01m 

Cx = 5 ·104 Njm, cy = 5 ·104 Njm, c 0 = 5 -104 Nmjrad 

bx = 105 N sjm, by = 105 N sjm, bo = 104N smjrad 

w = 280radj s 

The influence of e to the violation of both (3.1) and (3.2) depends on the set of parameters. In 
general we should note that.values of & is small and the constraint condition (3.1) could be violated 
more easily than condition (3.2). So recommended approaching is "optimization in small", that 
means iterative process of optimization, based on the set of parameters, choosen in advance. 

CONCLUSION 

The principle of compatibility in combin<i.tion with good algorithms, is convenient for studying 
the motion of mechanical systems. The obtained results are valuable not only for theoretical 
research but they could be used directly for technical applications as shown in the case of grinding 
machine. 

This publication is completed with financial support from the National Basic Research Pro­
gram in Nat ural Sciences. 
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NGHIEN CUU ANH H1JC1NG CDA DAO DQNG NGHIENG 

DEN sv LAM vrtc cDA MAY sANG RUNG 

Tren ca sCt sll- dvng nguyen IY phil hqp, vifc them b&t d.c dieu kifn lien ke't du·qc thl!c hi~n 
d~ dang, nhCt d6 c6 th~ mO ph6ng cic che' d9 lam vi~c cUa cic h~ ccr h9c. Bhi bio da str d\1-ng tinh 
cha':t nay d~ trlnh bay phucrng phip va m9t s5 ke't qui nghien cll-u, dii tinh toin tren miy tinh khi 
khio sit inh hrr&ng cUa g6c xoay nghieng cU. a bJ.n rung miy miti rung. 
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