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STABILITY OF THE EQUILIBRIUM REGIME OF

A SYSTEM OF TWO DEGREES OF FREEDOM
IN AMPLITUDE-PHASE VARIABLES

NGUYEN VAN DINH
Institute of Mechanics, NCNST of Vietnam

In {1] Hans Kauderer has used the amplitude-phase vartables to study the stability of the
equilibrium regime which is considered as a special oscillation of amplitude r = 0 and of constant
dephase 0.

In {2] this dephase has been explained as that of such motion called characteristic and this
explanation permits us to propose a lightly modification in Hans Kauderer’s method. The same
problem will be examined below for the equilibrium regime of an oscillating system of two degrees
of freedom. It will be shown that the results obtained in {2] can be applied without difficufty.

§1. SYSTEM UNDER CONSIDERATION AND ITS AVERAGED EQUATIONS

Let us consider a quasi-linear oscillating system of two degrees of freedom described by the
following differential equations: '
Ty + W Ty = ef)(zy, 5, 7o, Ty, wit,wat) (2 =1,2) (1.1)

where 1, 5 - oscillatory vartables; £ >> 0 - small parameter; overdot denotes time derivative; w;
ws - exciting frequencies near the natural ones, respectively; f{*), f(2) - functions of the form:

2

N2
FiH = Z {zu [A,(fm] + Z Z (c! ClH™) cos muwet + S sin mmrt)] + Zu [Ziﬂm—f—
1—=1r=1

+ZZ_,‘,‘: cosmupt+ 5 sinmo )| b+ () (w=1,2) (1.2)

m=1lr=1

with: N - a positive integer; A“‘D) Cor ) S“‘m) .. - constant coefficients, {...) represents the
terms of powers equal or greater tha.n 2 relatwe to Ty, T, Tz, T2
It is assumed that w;, wy don’t satisfy the relations of type:

nyw + nowg = 0 ny, my - integers (1.3)

In other words, the system considered is not in internal resonant stituation.
Introducing slowly varying variables either of type (a,b) or (r,0) we put, respectively:

2, = ay coswut+ by sinw,t, I, = —wua, sinwpt +w,b, cosw,t (1.4)
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X - Ak 5 — - A
T, = rpcase,, £, = rowgsingd, v, F ol A '

The corresponding averaged systems are

S TE Y= {0 ot :
G, = ;-:(f “’bmw“t); b“ = ,u“<‘ Y s yt (1 l)
and
. -—& (e} s 3 € [e) . 7
Py = —<f smlf«';), T = J(f cosa,il“> {u = 1,2) (1.1
)y, W

where { ) is the averaging cperator.
Recall that (a,,b,) and [r,., 8.} are related by:

dy = t,c088,, by =rysind, (u=12) {(1.%)

§2. THE EQUILIBRIUM REGIME, CHARACTERISTIC
MOTION AND STABILITY

Obviously, the system considered admits the equilibrium regime which correspends to the
trivial solution z; = 75 =0 or, in (s, b) variables, to ay = b; = ap = b; = 0.

The stability study of this regime will be based on the variational system whick coincides with
the linear part of the averaged one (1.6):

. € .
u = H{(A“ - Bu)au + [('u - Dl‘)b”}
iJ
(2.1)
. £
b = 5 {((Ju + Dyap + (4, + Bu]bu} (0 =1,2]
Wy
where
) L, iun ol 122 1, 2 —={ 1) i
A“ - w“Ail ’ B" = E(bilijli ] + w“cu,u )’ C}l = 5((1’[{!’1”'] W b;m )) Dl' = i;/ i

It is noted that, in (2.1], the two couples {a1,t;) and (ag,bz) are separated; consequently, the
stability study of the origin in each plane {a,,b,) can be accomplished independently.

As usual, from the characteristic equations:
£2

g B
Pt ;:A#P.u + w?

2 2 2 210 _
{a+p2-B-ctl =0 (u=12) (2.2)
. vlve deduce these asymptotically stable conditions:

15 ) o
Repf <0, pf=-"-{-a.t B2+ C2- D2} (n=1,2) (2.3)
‘ u

The stability conditions obtained can be interpreted as follows. For each p, the system (2.1)
being a linear one of two differential equations of constants coefficients, so that |3]:

- In the plane {a,, b,) each (simple or double, real or complex) characteristic value p, corre-
sponds, to a family (of one two parameters) of such motions called characteristic, defined as:

) . b
Q== £t by = et (2.4)
where £, n, are constants, satisfying the equations:
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[—E_(Au - B.u] _P] Eu + '2'5_(0# - Dn)’?u =0

2wy u

(2.5)
£ £
K(Cn + Du)éu + [E(A.u +By) - P] nu =0
" "
- The dephase 6;, of any characteristic motion is constant and determined as:
usind), =nycost), {2.8)

All characteristic motions of a family of one parameter have the same dephase; so, this family
is represented by any motion of the family.

For a family of two parameters, the dephases of characteristic motions are arbitrary and this
family is represented by any two motions of different dephases,

The above presented properties recalled, the stability conditions (2.3) can be considered as
the requirements imposed on representative characteristic motions:

In each plane (a,,b,) the equilibrium regime is asymptoticailty stable if all representative
characteristic motions posseses the same property i.e. if they tend asymptotically to the origin.

Kemark

- The equilibrium regime is supposed to be isolated i.e. the following nonegality is imposed:

2
[T{az+p2-B2-c2}#0 (p=1.2) (2.7)

p=1

- A double (real) characteristic value corresponds either to a one or a two parameters family
of characteristic motions. For the second case, B, = C, = D, = 0 and the averaged system {2.1)
becomes:
€ . €

ap = Z_w:A'u Oy by = Z_w;A“ by (2.8)

All characteristic motions have straight trajectories, passing through the origin.

§3. THE EQUILIBRIUM REGIME, :
THE VARIATIONAL SYSTEM IN (r,6§) VARIABLES

Let us pass over to the method of studying the stability of the equilibrium regime in amplitude-
phase variables. Using (1.8) the variational system (2.1} is transformed into:

Fyo= ;ﬂ-(A,u — B, cos26, + C,, sin 26,)
Wi
. . DU (3.1)
Tuly = ';i(D# + Cucos 26, + By sin 25#) (1= 1,2] '
Wy
Tt is not difficult to prove that (3.1) is just the linear part of the averaged system (1.7) relative

to ry, ra.

Thus,-in (r,#} variables, the system playing the role of the variational one is obtained by

neglecting in the averaged system ({1.7) the terms of powers equal or greater than 2 relative to ry,
Tz.- . ' )

" The next step consists in examining the representative characteristic motions. As it has been
shown in §2, the dephases ¢}, of these motions are constants, so:

fo=0 (p=1,2) (3.2)

30

e



>

The dephases 87, can be thus determined by vanishing the right-hand sides of the second and
_the fourth equations of the system (3.1):

Dy + Cucos28; + Busin20, =0 (n=1,2) (3.3)
we rewrite the first and the third equations of the system {3.1} in the form:

. er - — )
Ty = Zw” {Au +4/B2+ 02~ Dﬁ} (0= 12) {5.4)

I
and the stability conditions (2.3) can be easily obtained.
Remark - The right-hand sides of (3.1) don’t depend on 8, if B, = , = 0 {1 = 1,2). In this
case, the averaged system becomes:

Having found #*

iw?

£ - £
“Au T, 7’_1;6;1 = T”D_u C T (P" =1, 2) : (3'5)

Fu=
! 2(.0# w;L

and the stability conditions are:

A, <0 (p=1,2) (3.6)

§4. ONE FREQUENCY OSCILLATORY REGIME. STABILITY

The method presented above can be applied successfully to study the stability of the regime
where, for instance, “the part” z, is in oscillation while “the other part” z is in equilibrium. For
this case, we put f(2) in the form:

2 = To F(3y, &1, W t, wat) + o F{xy, &1 wit wat) +{...) (4.1)
where F, F are functions of same structure relative to z,, %, as 1), 12} relative to z,, %, z4,
Zg; (...) represents the terms of powers equal or greater than 2 relative to 25, 2. The averaged
system can be written as:

éI:E{K+aﬂL+b2M+( } by = {K+azL+sz+( )} (42)

iy = ;—{a2P+b2Q+{...}}, by = ;{@PMQQH._.)}

2 2
where K, L ... are functions of aj, b, (...) represents the terms of power equal or greater than 2
relative to ag, by. Suppose that (4.2) admits the solution:

a)p = CLT. bl = b g = b'z : 0 (43)
where af, b7 are constants satxbfymg the equatmns
Ko}, t}) =0, K(a), b3} =0 (4.4)

Introducing ther perturbations fa; = o) — af, §b; = by — by, 6@2 = ay, §by = by we form the
variational system:

. € K .
b= ool aroo 5;:5*’1 +asL{af, ) + kM (e, 1])
: a_ 57
§b, = f_{ K osar+ sy, + azL(ad, 89) +sz(a?.b?}}
wy dby (4.5)
i £
adg = w—z{agp(alsbo +b2Q(a“bO)}
N £
b = = {asPlal, B) + 0000, 7))
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where g—a{{; , g—{f— , ga% , % as all coefficients of ay, by are taken at af, 59.

The structure of (4.6) shows that:

- The stability of the couple (a2 = 0, bz = 0} can be studied directly and independently of
that of the one {a$, 89),

- If the-couple (az = 0, b3 = 0) is asymptotically stable i.e. if tlim az =0, tlim by = 0, the
— O g ] .
stability of the couple (a?, bY) can be based on the system:

§ay = f-f{aKaal + Q—‘Esm}
30.1 561 (4 6)
. 8K 5K ’
§by = fay + —6
! {aal t ETH) bl}

In other words, the stablhty study of the couple (a,29) is reduced to that of the stationary
regime zY = a% coswqt + b sinw, ¢ of the subsystem: : :

iJl +w%2: Ef(l}{ﬁl,i'l_,e, O:wltlet) (47)

Tt is easy to translate all these remarks into (r,#) language. The averaged system in (r,d)
variables is of the form: -

i €
_rl:;;{Un,sl)mvm,al,eg) (-9}
. €
7’191::1{ r,01) + eV (r, 81, 02) + (. )}

. —&
Fo = —qraW(ry, 8y, 82) + (.. )}
wz

rzégm {rzW{rl,f}l, 2) + ()}

Wz

where U, U (V, V, W, W) are functions of ry, §; (r1,01,02); {...) represents the terms of powers
equal or greater than 2 relative to ro. The stationary regime (4.3) corresponds to the solution

= rg.)ﬁ g = i re=20 . (4'9J
where r?, 89 are constants satisfying the equations:
U(rl, 8ty =0, U(,8)=0 (4.10)

The variational system (4.5) is replaced by: |

] a1 aly
§f) = {61—1 &ry + o ETH 66y +T2V("?’5?:‘92)}
: 8 a
T?'551: { 5r1+£591+T2V[ ?192:92)}
dry a6y (4.11)

?.’2 = ‘ugr2W(rl,E91’92)
. I3 _
Yo - 62 —_ :TQW(T?,H?,GQ)
2

aUu  au U  8U
where §r; = ry — ], 88 = 6, — 6] - the perturbations; B_al— ; 5; , 59-: , -3—9; as all coefficients

of ry are taken at r{, #. In the plane (rs, 82) the constant dephases 45 of characteristic motions
satisfy the equations:
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W(ry 60 62y =0 | | (4.12)

and the stability conditions of the equilibrium in the plane {r;,8;) are:

ReW(r?,40 82} >0 (4.13)
For the couple {r{,87) we form the characteristic equation:
—£ U —e 8-
75} 8r1 —f Wi 391
e 8l e aU
Wi BT]_ Wy 651

=0 | _ (4.14)

and the stability conditions are Rep < 0.

Remark - W and W, relative to 6y, are of same structure as the right-hand sides of (3.1),
relative to ,. Therefore, the dephase f; can be absent in W and W only simultaneously. In this
case, the stability condition of the couple (az = by = 0} is W{r?,67) >

Example

Let us consider an oscillating system described by the differential equations:

i+ wir = s{ — hy %~ f1° +czy2}
4+ vy = gsinyE + s{ — hoy — By + c:r2y}
where hy, hy are positive constants; w? = 4% — A, mw + nv # 0, {m, n - interger); other symbols

retain the same significations as in [4] (pp 288-294).
Using the amplitude-phase variables, we put:

T=rcosy, £=-—rysiny, ¢ =-t-14

= peosy + qusingt, Yy = —pusing + . cost
q

b2 — 42

p=vt—0o, g.=

where r, p; §, o are slowly varying amplitudes and dephase angles, respectively.
The averaged system is of the form:

{h1’1+ —cqls 11126}
———T-{ A+ i 2-1—§ﬁr2—{—E 2c0529}
. g* 4.0 1 4‘1*
f):fip‘{hzlf}
|‘/
. o
p0”=~“2—{ B + ﬂp **T}

Obviously, in the first approxiniation:
- The trivial solution ry = p; = 0 corresponds to the pure-forced oscillation z = 0, y = g, siny¢
- The quasi-trivial solutions

3 c c2
P2 =0, Zfr=(A+Cal) Eq* hiy?
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correspond to the combined oscillations

e Ty =Troco8t, Yy = q,sin-t

Following the above presented analyses, we can conclude that, in the first approximation:
- The trivial sclution is asymptotically stable if

i

:Re{hn + iqf sin 29} >0

where

sin 20 = +4/1— cos2 28 = + 1—(A+£2)2(4)2

- In the combined regime, z is parametrically excited and its motion is governed by the
differential equation: )

FRwan

i+ ylz = 5{ — hid+ Az — fz° + cz(q. sinfyt]z}

= s{ — hiz+ (A + %qf)m — ﬂxa-'—'"gqfx cos 27t}

Since Ay > 0 the amplitude r, exponentially tends to zero. Henae‘, "t'h'e'pzirémetric oscillation with
large amplitude r; (sign + before radical) is asymptotically stable.
This publication js completed with financial support from the National Basic Research Pro-

gram in Natural Sciences.
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ON DINH CUA CHE DO CAN BANG & HE HAI BAC TU DO
TRONG BIEN BIEN PO - PHA

Bii todn md rohg viée 4p dung nhiing k&t qui dat dwoe trong [2] vE phwong phép st dung

cic bifn bién db - pha dé khio sit &n dinh clia ch€ d5 cin bing & hé dao ddng 4 tuyén hai bic ty
do.
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