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STABILITY OF THE EQUILIBRIUM REGIME OF 
A SYSTEM OF TWO DEGREES OF FREEDOM 

IN AMPLITUDE-PHASE VARIABLES 

NGUYEN VAN DINH 
Institute of Mechanics, NCNST of Vietnam 

In [1] Hans Kauderer has used the amplitude-phase variables to study the stability of the 
equilibrium regime which is considered as a special oscillation of amplitude r = 0 and of constant 
dephase e·. 

In [2] this dephase has been explained as that of such motion called characteristic and this 
explanation permits us to propose a lightly modification in Hans Kauderer's method. The same 
problem will be examined below for the equilibrium regime of an oscillating system of two degrees 
of freedom. It will be shown that the results obtained in [2] can be applied without difficulty. 

§1. SYSTEM UNDER CONSIDERATION AND ITS AVERAGED EQUATIONS 

Let us consider a quasi-linear oscillating system of two degrees of freedom described by the 
following differential equations: 

(p = I, 2) (Ll) 

where x 11 x 2 - oscillatory variables; e > 0- small parameter; overdot denotes time derivative; w11 

w 2 - exciting frequencies near the natural ones 1 respectively; Jill, j( 2 l- functions of the form: 

2 N 2 

fit•) = 2.= {xv[A~'") + 2.= 2.=(C~';"'Icosmw,t+S~';"'Isinmw,t)] +xv[:4~'" 1 + 
v=l nL=l r=l 

N 2 

"' "'(-(~m) -(wn) l]} ( } + ~ ~ cvr cos rnwrt + s vr sin mw .. t + ... (!" = 1,2) (1.2) 
rn=l r=l 

N . . . AI~O) clt•m) sit•"') t ffi · ( ) h with: - a pos1t1ve mteger; v , vr 1 vr 1 ••• - constan coe Cients, . . . represents t e 
terms of powers equal or greater than 2 relative to x1 , :i: 1 , x2 , :i:2 . 

It is assumed that w 1 , w2 don't satisfy the relations of type: 

In other words, the system considered is riot in internal resonant situation. 
Introducing slowly varying variables either of type (a, b) or ( r, 8) we put, respectively: 
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(L3) 

(L4) 
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or 

The correspon.ding avtTag:t>d systems are 

' - ( : 
-",, 

and 
. -e: (/II') . ·'· ) r 11 =- s1n'+'1t, w,, rJ,el. = 

where ( ) is the averaging operator. 

Recall that (a", b") and (r,, B") are related by: 

§2. THE EQUILIBRIUM REGIME, CHARACTERISTIC 
MOTION AND STABILITY 

( I ~,I 

I 1.7) 

(U) 

Obviously, the system considered admits the equilibrium regime which corresponds to the 
trivial solu~.ion x 1 = x 2 = 0 or, in (a, b) varia.bles, to a 1 = 61 = a 2 = 62 = 0. 

The stability study of this regime will be based on the va.riational system which coincide~ with 
the _linear part of the averaged one (1.6): 

where 

a1, = _c:_{(A1,- B,,)a,, + (C"- D,,)b,,} 
2wl' 

b,, = -"-{ (C1,+ D,,)a1, +(A,,+ R,,)b,,} (p. = 1,2) 
2w 1~ 

s - 1 ( •(J~2) c(Jt2)l 
,.- 2 ~Jl.Ji +wjt'JLJL! 

(2.1) 

D ::::., Af"i'l 
I' ' f!. 

It is noted that, in (2.1L the two couples (a 1 ,bl) and (a 2 ,b2 ) are separated; consequently, t.lte 
stability study of the origin in each plane (a1l, bM) can be accomplished independently. 

As us,ual, from the characteristic equations: 

=0 (f' = 1,2) (2 2) 

· we deduce these asymptotically stable conditions: 

(Jt=1,2) (2 3) 

The stability cuuditions obtained can be interpreted as follows. For each tL, the system (2.1) 
being a linear one of two differential equatiOns of constants coeffici~nts, so that \3]: 

-In the plane (ali, 61,) each (simple or double, real or complex) characteristic value (! 11 corre­
sponds, to a family (of one two· parameters) of such motions ca.lled characteristic, defined as: 

(2.4) 

where E1l, 'rltl are constants, satisfying the equations: 
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[-'-(A~- B~)- pl E~ + -'-(c~- D~h~ = 0 
2w~ 2w~ 

_:_(C~ + D~)E~ + [-'-(A~+ B~)- pl ~~ = 0 
2w~ 2w~ 

(2.5) 

- The ciephase &; of any characteristic motion is constant and determined as: 

(2.6) 

All characteristic motions of a family of one parameter have the same dephase; so, this family 
is represented by any motion of the family. 

For a family of two parameters, the dephases of characteristic motions are arbitrary and this 
family is represented by any two motions of different dephases. 

The above presented properties recalled, the stability conditions (2.3) can be considered as 
the requirements imposed on representative characteristic motions: 

In each plane (a~-',b~) the equilibrium regime is asymptoticallty stable if all representative 
characteristic motions posseses the same property i.e. if they tend asymptotically to the origin. 

Remark 
- The equilibrium regime is supposed to be isolated i.e. the following nonegality is imposed: 

2 

II {A~ + D~ - s; - c;} t o (f.L = 1, 2) (2.7) 
JJ.=l 

- A double (real) characteristic value corresponds either to a one or a two parameters family 
of characteristic motions. For the second case, Bp. = CP. = DJJ. = 0 and the averaged system (2.1} 
becomes: 

. • A aJJ. = -- JJ. ·aJJ., 
2w~ 

. e 
b~ =--A~· b~ 

2w~ 

All characteristic motions have straight trajectories, passing through the origin. 

§3. THE EQUILIBRIUM REGIME, 
THE VARIATIONAL SYSTEM IN (r,B) VARIABLES 

(2.8) 

Let us pass over to the method of studying the stability of the equilibrium regime in a.mplitude­
phase variables. Using (1.8} the variational system (2.1) is transformed into: 

i-~-' = erJL (A"- Bp. cos 2BJJ. + Cp. sin 2B") 
2w~ 

· er~ ( . ) rp.B" = -- Dp. + CIJ. cos 281l + BIJ. sm 2BIJ. 
2w~ 

(f.L = 1,2) 
( 3.1) 

It i," not difficult to prove that (3.1) is just the linear part of the averaged system (1.7) relative 
to TI, T2. 

Thus, ·in (r, B) variables, the system playing the role of the variational one is obtained by 
neglec~iilg.in the averaged system (1.7) the terms of powers equal or greater than 2 relative to r 11 

The next step consists in examining the representative characteristic motions. As it has been 
shown in §2, the dephases (J~ of these motions are constants, so: 

e· = o 
~ 
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(f.L=1,2) (3.2) 
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The dephases e;1 can be thus determined by vanishing the right·hancl sides of the second and 
the fourth equations of the system (3 .. "1): 

D" + C" cos2e;, + B" sin 2e;, = o (I"= 1, 2) ( l.3) 

Having found e~~~ we rewrite the first and the third equations of the system {3.1) in the fnrm: 

· _er"{ V' z D'} ( 12) r" - - A"± B,, + C"- " I"= , 2w 1, 

and the stability conditions (2.3) can be easily obtained. 
Remark- The right-hand sides of (3.1) don't depend one" if B" = c,, = 0 (I"= 1, 2). 

case, the averaged system becomes: 

. " r 11 = -AJ.L · r 1,, 

2w" 
and the stability conditions are: 

(I" = 1, 2) 

§4. ONE FREQUENCY OSCILLATORY REGIME. STABILITY 

In this 

(3.5) 

(3.6) 

The method presented above can be applied successfully to study the stability of the regime 
where, for instance, "the part" x 1 is in oscillation while "the other part" x2 is in equilibrium. For 
this case, we put j(z) in the form: 

/1 21 = x,F(x1, x1, w1t, wzt) + x 2F(x1 , xt,Wtt,w,t) + ( ... ) ( 4.1) 

where F 1 F are functions of same structure relative to x1 1 ±1 as jtll, j12l relative t'o x 1, ±1 1 x2, 
i:z; ( ... ) represents the terms of powers equal or greater than 2 relative to x2 , Xz. The averaged 
system can be written as: 

at= ::{K+azL+bzM+( ... )}, b1=:t{K+azL+bzM+( .. l} 
a, = :: { a2 P +b2 Q + (. .. )}, b2 = :, { a2P + b2 Q + ( .. ) } 

(4.2) 

where K, L ... are functions of a1 , b 1 , ( ... ) represents the terms of power equal or greater than 2 
relative to a 2 , b2 . Suppose that (4.2) admits the solution: 

a1 = a~
1

, b1.= b?, az = b2 = 0 

where a~ 1 b~ are constant~, satisfying th,: equ~tions: 

K(a~,b'L} = 0, K(a~,b~) = 0 

(4.3) 

(4.4) 
Introducing ther perturbations 6a1 = a1- a~, 6b1 = b1- b~ 1 6a2 = a2, 6b2 = b2 we form t~~ 

variational system: 

. -• { aK aK ( o ") (. o ol} oa1 =- -a oat+ -b-ob1 + azL a 1 , b1 + b,M a 1 , b1 
wl al a 1 

· "{aK aK -oo) -(oo} obt =- -oat+ -b-ob1 + a2 L(at, bt + b2 M a 1 , b,) 
WI aal a 1 

a2 = :: {a2 P(a~,b~) +b2 Q(a~,b~)} 
• 

0 
{ -( 0 0 -( 0 0 } bz =- a2 P a1,b,) + b2 Q at,b1) 

· Wz 
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BK BK BK BK 
where -a , b , a -ab as all coefficients of a 2 , b2 are taken at a~, b~. 

a1 8 1 a 1 1 

The structure of (4.6) shows that: 
- The stability of the couple (a2 = 0, b2 = 0) can be studied directly and independently of 

that of the one (a?, b~), 
-If the ·couple (a2 = o, b2 = o) is asymptotically stable i.e. if lim az = 0, lim b2 = 0, the 

t-+co t--->oo 

stability of the couple (a~, b~) can be based on the system: 

Sa 1 = _, { aK Sa,+ aKb Sbt} 
wl aal a 1 

· c { aK aK } Sb 1 = - -Sa1 + -Sb1 w, aa, ab, 

(4.6) 

In other words, the stability study of the couple (a~, b~) is reduced to that of the stationary 
regime x~ = a7 cos w1t + b~ sin w 1 t of the subsystem: 

(4.7) 

It is easy to translate all these remarks into (r,&) language. The averaged system in (r,O) 
variables is of the form: 

i- 1 = _,{U(r1 ,et) + r2V(rt,e 1 ,e2 ) + ( ... J} 
. WI 

r 1 e, = :, fuh, e!) + r,Vh, e,, e,) + ( ... )} 

i-2 = ::{r2 W(r1,e1 ,e2)+( ... J} 
( 4.8) 

r2 B2 = :, {r2W(r1 ,e 1 ,e 2 )+( ... J} 
where U, U (V, V, W, W) are functions of r 1 , 81 ( r 1 , Or, 82); ( ... ) represents the terms of powers 
equal or greater than 2 relative to r 2 • The stationary regime (4.3) corresponds to the solution 

r1=r~, B1=8~, r2=0 

where r7, &7 are constants satisfying the equations: 

U(r~, e~) = o, U(r~, e~) = o 

The variational system (4.5) is replaced by: 

(4 9) 

(4.10) 

(4.11) 

where Or1 = r1 - r?, 0& 1 

of r 2 are taken at r~, &? . 
satisfy the equations: 

au au au au 
= el- e?- the perturbations; -- ' a ae as all coefficients 

aal rl ael 1 

In the plane ( r 2 , &2 ) the constant dephases e; of characteristic motions 
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W(r?, e~', e;) = o 
and the stability conditions of the equilibrium in the plane (r2 , 02 ) are: 

Re W ( r?, B~, e;) > 0 

For the couple (r~, 8~) we form the characteristic equation: 

-g au 
-.--p 
Wi 8r1 

g au 
wl arl 

and the stability conditions are Rep < 0. 

-<au 
w, ae, 

g au 
---p w, ae, 

=0 

(4.12) 

( 4' 13) 

(4.14) 

Remark- W and W, relative to 82 , are of same structure as the right-hand sides of (3.1L 
relative to Ow Therefore, the dephase 82 can be absent in W and W only simultaneously. In this 
case, the stability condition of the couple (a 2 = b2 = 0) is W(r7,B~) > 0. 

Example 
Let us consider an oscillating system described by the differential equations: 

" 2 { h ' f3 3 2) x+w x=c - 1x- x +cxy 

"2' {h'/33 2) y + v y = q sm ')t + £ - 2 y- y +ex y 

where h 1 , h2 are positive constants; w2 = 1 2 - c.6., mw + nv i 0, {m, n- interger); other symbols 
retain the same significations as in [4J (pp 288-294). 

Using the amplitude-phase variables, we put: 

X= rcostj;, X= -rJsin'lj;, tj; = jt- e, 
y =peas tj; + q* sin}t, iJ = -pvsinrp + 19* cos Jt 

q 
r.p=vt-u, q*= 2 " 

v - ~-

where -r, p; B, a- are slowly varying amplitudes and dephase angles, respectively. 
The averaged system is of the form: 

. or { 1 0 • } r=-- h11+-cq;sm20 
2') 4 

· or { ( c 2 ) c 2 3 2 c 2 } rB=-
21 

- IJ.+4q• -4p +;;,f3r +;;,q.cos2B 

, 'P { } p =- Zv h2v 

. ep{3- 2 3 2 c 2 } per=-- -f3q + -j3p - -r. 
2v 2 • 4 2 

Obviously, in the first approximation: 
-The trivial solution r 1 = p1 = 0 corresponds to the pure-forced oscillation x = 0, y = q* sin 1t 
- The quasi-trivial solutions 

P2 = 0, 
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correspond to the combined oscillations 

x2 = r2 cos tP, Y2 = q* sin 1t 

Following the above presented analyses, we can conclude .:that,)n-=the first approximation: 
~ Th~. trivial solution is asymptotically stable if 

Re { h1 1 + ~ q; sin 2&} ~ 0 

where 

sin 2& = ±vh- cos2 2& = ± 1- (Ll + ~q;)2t:;) 
2 

- In the combined regime, x is parametrically excited''alld its mOt•ion is governed by the 
differential equation: 

-.,-_; .,·. 

ii + ·ix. = e{ - h,i + Llx- {3x3 + cx(q. sin 1t) 2
} 

= e{- h,i + (t. + ~q;)x- {3x3
-'- ~q;x cos 211} 

Since h 2 > 0 the amplitude r 2 exponentially tends to zero. Hen~-~', --the parametric oscillation with 
large amplitude rz (sign+ before radical) is asymptotically stable. 

This publication is completed with financial support from the National Basic Research Pro­
gram in Nat ural Sciences. 
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6N D)NH CUA CHE DQ CAN BANG & H.!); HAI B~C TV DO 
TRONG BIEN BIEN DQ - PHA 

Bii to<in m& r{lhg vi~c <ip dl._lng nhfrng ke't qu·a d;;tt drrqc trong [2] v~ phrrang phip sll- dl._lng 
cic bie'n bi€J?- d9 ~ pha d~ khio sit 5n djnh ctla che' d9 cin bt.ng & h~ dao dQng a tuye'n hai b~c tv 
do. 
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