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ON A CLASS OF PROBLEMS ON UNSTEADY FLOW OF
VISCOUS - PLASTIC FLUIDS IN PIPE - LINE

NGUYEN HUU CHI, VU DUY QUANG, PHAM HOAT THANH
Huonov Technology University

SUMMARY. Combining the guasi - stationary principle with velocity profile properties of
respective steady flow and Sliozkin - Targ’s approximation we introduce a method to solve a class of
problems on unsteady flow of viscous - plastic fluid in pipe - lines. Using this method we sclve the
problems on unsteady pressure How in the horizontal cylindrical tube. We also compare the obiained
results with those of Tiabin showed in [1].

1. INTRODUCTION

The model of viscous - plastic fluid (Svedov - Bingham's model) is used to solve many technical
problems on pipe - line transport of fluids or slurries (fluid - solid mixtures), satisfying or basing
on-Bvedov - Bingham’s hypothesis about shear stress [2, 3, 6]

' d
T =1g +ngz (1.1)

in which 7y is an untimate shear stress (yield stress).

A lot of problems on one - dimensional steady motion of viscous - plastic fluid in pipe - lines
have been solved and showed in literatures, However, it is difficult to find complete solution of
unsteady flow even by the approximate methods {1, 2, 3].

The Tiabin’s solution of problem on unsteady How in horizontal cylindrical tabe was showed
n [1] by using Sliozkin - Targ’s method with approximation
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In this paper we prove the first corollary of first average value theorem for the class of functions
being the parabolas with their common symmetric axis. Using this proved corollary we introduce
a method to be able to solve a ciass of problems on unsteady flow of viscous - plastic fluid with
higher approximations. This method is the combination between guasi - stationary pr1nc1ple and
Sliozkin - Targ’s approximation

(io =

; wm/_w (1.3)

For illustrating this method we consider the unsteady flow of viscous - plastic fluid in the
horizontal cylindrical tube. The obtained resulis (the' laws of development of elastic core and
velocity profile) are compared with those of Tiabin.
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We close the paper with some comments about the introduced method and the obtained
results, including an economized energy generated by the sublayer effect [4] in pipe - line hydro-
transport.

- 2. FIRST COROLLARY OF AVERAGE VALUE THEOREM
Consider the function _ ' ‘ :
f(z) = falz) = f1(a) ' (2.1)

where y = f1{z) and y = f;(z) are two parabolas with the common symmetric axis and distance
between their vertexs is ¢. Without loss of generality we may assume that

v=filz) = ba?, (P1) [2.2)‘
and y = fafz) = az’® + ¢, (P2)

i

where a 7# b # 0 (Fig. 1). .
Corollary 1. Assume that two parabolas (P;) and (F;) are crossed at the point My(z¢, yo), then
there exists £ € [0, xg] such that

()= ;—D f /(z)ds (2.3)

and we always have

2 2 2
16 = 2e=2n0) - 1O) = 10 e
Proof. The first average value theorem immediately give (2.3) (It is clear that z, # 0). From (2.1},
(2.2) and (2.3} we have

a—b

1 xp . )
18 = [ 1) = " Lat v
O

‘Since (P;) and {P,) are croseed at My(zo,¥n), it follows (a — b)z2 = —c. Note that ¢ =
fg(o) - fl(O) = f(D) we obtain .

£10).

W)

16) = 3= 31500) - 200)] -

3. RECTILINEAR UNST‘EADY PRESSURE MOTION OF
VISCOUS-PLASTIC FLUID IN HORIZONTAL CYLINDRICAL TUBE

Cousider the one-dimensional unsteady pressure flow generated by constant pressure gradient
=P in horizontal cylindrical tube. Denote by R a radius of the tube and Orfz a system of

cylindrical coordinates, in which Oz coincides with the axis of the cylinder (Fig. 2). Throught the
forthcoming, unless otherwise specified, we shall adopt the traditional, terminologies and notations.
a} Motion equations and their conditions
From the system of Henki - Iliugin’s motion equations, equation of continuity and symmetry
of flow we obtain the following motion equation {2]

ro<r<R (3.1)

v 8% 1dv 5 Ap
(G2 n,
r £

p§=n 3_1"2 - rdr
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The boundary conditions of this problem will be:

(R, t}) =0 (3.2)
Bulr, t)
AR = 3.3
BT !':T'.n D ( )
and 1nitial condition will be
v(r, 0) = 0. (3.4)

The velocity of flow in the regidn of elastic core is determined by
wl(t) =virt)| _ ; < (3.5)

The motion equation of elastic core will be in form:

Bv(?’, t) _ éf _ ETL’ } (f{.ﬁ]
at r=ry PP- Ao
where ry = ry(t) is the radius of elastic core, satisfying the condition
ro(0) = R {(3.7)
and
1i ty = . 3.8)
Jum ro(t) = rofoo) = APT.,. (3.

b) Method and results
Substituting dv/dt in (3.1) by its average value in viscous - plastic region {the Slioskin-Targ’s
approximation (1.3))
R
1 du

= — [ 2
p(t) T wm

Fa

we obtain the following approximate equation

__@2+@ggm+% (3.9)
PEEM 57 7V ar r £ o
The solution of the equation (3.9) satisfying the boundary condition (3.2) and (3.3) is
A 2 T Ap ¥ 7 r
v(rt) = ﬂ%(R’lur‘)—g(RQ“rE)_f{R—r)—H“(%r”——ggr“wﬁ)lnﬁ Do <r < R. (3.10)
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in which rg(t) and ¢ = p(t} are not determined yet.
For determining (t) we use the quasi-stationary principle, i.e. we approximate velocity profile
(3.10) by that of réspective stationary steady flow, that is a semi-parabola with its vertex at r = rq

du d
[1]. Applylng corollary 1 with —— 5 playing the role of f{z) and note that ¢ = a—u , we obtain
r=ry
29v
plt) = 33 e, (3.11)

Combining (3.11) and the motion equation of elastic core (3.6} gives
2 AP 27’0
t) = —(W—M) 3.12
et =3\ o (3.12)
Substiﬁuting (3.12) into {3.10), we obtain the Zpproximate solution of considered problem
Ap 70

Ap T ) o q T Ty r
t) = R — ~ =Z{R-— ._(— — ) ; <r<R 3.13
v(nt) (12277 * 3nro ( ") 7 (R=r)+ 2ty " g resrs (3.13)

The velocity of flow in the elastic core is determined by (3.5) and will be

Ap To 2 2 0 ro f Ap 0 Tp :
= o) = (= V() e T (B YD (s
vo(t) = v(ro, t) 1207 + 377"0)( ra) ; ( o) + 3 \22g g . n-= r<ry | }
~ From (3.6) and (3.13) we get the differential equation for determining the radius of elastic
core: .
A Ap
[_ (B2 - 12 + P(lnﬂ)m o (1 2)]@_,2_2&
3nr; 3én dt el pry
After separating the variables, yields:
E £ o £ 2 R
278 ) In= 4272 —) - =
‘ f R? v ( ) o
(,,Oln_JrE_] o Tt B T \Ap/ R ap z)dnzﬁdt (3.15)
Ap R Ap 2r { P
ro — 2ro——
Ap
Integrate (3.15) and note that
. 21’{]2 2
re > refoc) = (E—F)

we obtain the solution of equation (3.6} (or (3.15)) satisfying (3.7} (and (3.8)} as follows:

LE s roro(o9) + T + Ry (o))

R 4
+%[F2 — rg(oo)]in - : ZZ%:(O)) o (200) (in%)ln{ro — ro{oo}]+
L7 °°) Z (°° (R" - -r%) = 3?’% (3.16)

By determining ro(t) from (3.16) a.nd substltutmg it into (3.13) and (3.14) we obtain v = u(r, £)

and vy = ve(t). The dischage of flow is determined as follows:

R :
Q(t) = mravg(t) + 2 / v(r, t)rdr ‘ (3.17)

_F(ABP | T Yips_ ,4y_TT0 a_s_f_o(ifz TN g2 2
— (12£n+3nro)(R ro) (R ) o )(R —r5).
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in which rg = ro(t} is determined from (3.16).
¢) Discussion
With the approximation (1.2), Tiabin determined

_ Ap 27’(1

t) = .= 3.18
el ) pt (L] { )
vr(r,t) = 51(32 A MR ), m<r<R (3:19)
Nru *
vor (1) = 5:";{1,-‘ - r3) - %(R -7}, r < (3.20)
rof

and the law of developing elastic < ore is determined by formula:

7 {00) +F(o0) ~ 2, Fo - Faloo) | ruloc)(Fo — 1)

t= Slnrg + S22 DI L BT 3.21
o 2 M1 R (0) 12 (3.21)
in which - ’ _
_ 7 _ riloc 2 T . Ty
f= Ly AR o =
pR2” o{oe) R Ap R' "7 R

For convenience of comparison, the laws of developing the elastic cores and the velocity profiles
in both of the cases are expresaed in Fig. 3 and Fig. 4
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Where - - - - - - - (dash lines) for Tiabin's results ({3.21); (3.19) & (3.20}),

; 3
(solid lines) for formulae {3.16); (3.13) & (3.14) and T = 2y,
£

From Fig. 3 it follows that, the elastic core determined by the formula {3.16} is changed faster
at first and later on it’s changed more slow than Tiabin’s one. However, Fig. 4 shows that the
velocity determined by (3.13) or (3.14) are always bigger than the respective velocity determined
by (3.19} or (3.20).

When t — oc, the elastic cores and velocity profiles in both of the cases are tended to the
those of respective steady flow, i.e. the obtained results {3.13}, {3.14) and {3.17) will be identical

to the well - known results of respective steady flow with 1 = ;frg[co) 1, 8.

4. CONCLUDING REMARKS

1. The problems on unsteady Jows of viscous - plastic uid belong to the class of problems with
mobile boundaries. As far as we know, there were some solutions of problems on unsteady flow in
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the pipe - line with certain concrete boundary conditions or using the supplementary assumptions
for the approximate function ¢(t) and the law of developing of elastic core |1, 2].

Note that, we always can write one condition at the shaded boundary expressing the motion
equation of elastic core in form

du

—a_t r=ru - f(rO)

On the other hand, the velocity profiles of respective steady flows have been or can be de-
termined. Therefore, combning the quasi - stationary principle and Sliozkin-Targ’s method we
can solve a class of problems on unsteady flows of viscous-plastic finid in pipe-line with higher
approximations.

2. The preblem on unsteady flow with sublayer effect has two mobile boundary, hence, for
golving it completely we need more a one equation, describing the law of development of sublayer
§ = 4(1) {(or Ry = R.(t) - see its respective steady flow [4]). According to Smoldurev and other, the
viscosity coeflicient in sublayer 0y is substantially less than the coefficient of structural viscosity 5
of transport slurry {fluid - solid mixture), so the discharge of flow is increased considerably in the
flow with the viscous sublayer effect near the wall. For the steady flow, this increased discharge
showed in [4] is
. . A 1 1 TA

007320~ - 1) i -0
consequently a economized energy is the energy using to transport this mass (per unid of time).

3. For solving the problem on one - dimensional unsteady pressure fBow of viscous - plastic
fluid between two infinite planes we need not to use the quasi-stationary principle |5}

This publication is completed with financial support from the National Basic Research Pro-
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VE MOT LGP CAC BAI TOAN DONG CHAY KHONG DUNG
- OUA CHAT LONG NHOT-DEO TRONG ONG DAN

Két hop nguyén ly twa dirng véi tinh chit cda profile vin tdc trong chuyén ddng dirng twong
tng vi xip xi Sliozkin-Targ chiing t3i dwa ra phwong phap gidi 16p cdec bal toin chuyén déng
khéng ditng cda chit 1dng nhét-déo trong Sng din. St dung phwong phip niy ching t61 gidi bai
todn chuyén déng ¢é 4p trong éng hinh tru nim ngang, cic két quid nhin dwoc di dwoc so sdnh
véi k€t qud cda Tiabin trinh bay trong [1].
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