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ON A CLASS OF PROBLEMS ON UNSTEADY FLOW OF 
VISCOUS - PLASTIC FLUIDS IN PIPE- LINE 
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SUMMARY. Combining the quasi - stationary principle with velocity_ profile properties of 

respective steady flow and Sliozkin- Targ's approximation we introduce a method to solve a class of 

problems on unsteady flow of vis~ous- plastic fluid in pipe - lines. Using this method we solve the 

problems on unsteady pressure flow in the horizontal cylindrical tube. We also compare the obtained 

results with those of Tiabin showed in [1]. 

1. INTRODUCTION 

The model of viscous- plastic fluid (Svedov- Bingham's model) is used to solve many technical 
problems on pipe - line transport of fluids or slurries (fluid -solid mixtures), satisfying or basing 
on ·Svedov- Bingham's hypothesis about shear stress [2, 3, 6] 

dv 
r = ro + ~ dn 

in which To is an untimate shear stress (yield stress). 

{1.1) 

A lot of problems on one- dimensional steady motion of viscous -plastic fluid in pipe- lines 
have been solved and showed in literatures. However, it is difficult to find complete solution of 
unsteady flow even by the approximate methods [1, 2, 3]. 

The Tiabin's solution of problem on unsteady flow in horizontal cylindrical tube was showed 
in [1] by using Sliozkin- Targ's method with approximation 

R R 

1 j ov 1 j a v I av I p(t) = -- -dr= -- - dr=-
R- ro at R- ro at r=ro Bt r=ro 

(1.2) 

In this paper we prove the first corollary of first average value theorem for the class of functions 
being the parabolas with their common symmetric axis. Using this proved corollary we introduce 
a method to be able to solve a class of problems on unsteady flow of viscous - plastic fluid with 
higher approximations. This method is the combination between quasi - stationary principle and 
Sliozkin - Targ's approximation 

R 

<p(t) ~0 _1_ J av dr 
R- ro at (1.3) 

" 
For illustrating this method we consider the unsteady flow of viscous - plastic fluid in the 

horizontal cylindrical tube. The obtained results (the laws of development of elastic core .and 
velocity profile) are compared with those of Tiabin. 
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We close the paper with some comments about the introduced method and the obtained 
results, including an economized energy generated by the sublayer effect [4] in pipe - line hydro­
transport. 

2. FIRST COROLLARY OF AVERAGE VAL DE THEOR~M 

Consider the function 
f(x) = h(x)- fr(x) (2.1) 

where y = fi(x) andy= h(x) are two parabolas with the common symmetric axis and distance 
between their vertexs is c. Without loss of generality we may assume that 

and 

where a 'I b 'I 0 (Fig. 1). 

y = fr(x) = bx2
, 

y= fz(x) = ax2 +c, 

(2.2) 

Corollary 1. Assume that two parabolas (P1 ) and (P2 ) are crossed at the point M0 (x0 , yo), then 
there exists c E [0, xo] such that 

xo 

/(c)= _1_ j J(x)dx 
xo 

(2.3) 

0 

and we always have 
2 2 2 

!(c)= 3c = 3[/z(O)- fr(OJ] = 3/(0). (2.4) 

Proof. The first average value theorem immediately give (2.3) (It is clear that x 0 ¥ 0). From (2.1), 
(2.2) and (2.3) we have 

xo 

f(C) =- f(x)dx = ~-x~ +c. 1 J a- b 
xo 3 

0 

Since (P,) and (P2 ) are croseed at Mo(xo, yo), it follows (a- b)x~ 
fz(O)- fr(O) = f(O) we obtain 

-c. Note that c 

2 2 2 
/(c)= 3c = 3[h(O)- fdo)] = 3/(0). 

3. RECTILINEAR UNSTEADY PRESSURE MOTION OF 
VISCOUS-PLASTIC FLUID IN HORIZONTAL CYLINDRICAL TUBE 

Consider the one-dimensional unsteady pressure flow generated by constant pressure gradient 

~p in horizontal cylindrical tube. Denote by R a radius of the tube and OrBz a system of 

cylindrical coordinates,· in which Oz coincides with the axis of the cylinder (Fig. 2). Throught the 
forthcoming, unless otherwise specified, we shall adopt the traditional, terminologies and notations. 

a) Motion equations and their conditions 
From the system of Henki - Iliusin's motion equations, equation of continuity and symmetry 

of flow we obtain the following motion equation [2] 

p av = '1 ( i3
2
v + ~ av) - To + ilp ; ro <:; r <:; R 

at i3r2 . r or r i 
(3.1) 
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The boundary conditions of this problem will be: 

v(R,t)=O 

3v(r,t) I = 0 
Br r=rn 

and initia! condition will be 
v(r, o) = 0. 

The velocity of flow in the region of elastic core is determined by 

vo(t)=v(r,t)[,~,,; r:::r0 . 

The motion equation of ela::>tic core will be in form: 

av(r, t) I 
at r=ru 

.6.p 2-ru 
---
p£ prn 

where r 0 = r 0 (t) is the radius of elastic core, satisfyillg the condition 

and 

b) Method and results 

r 0 (0) = R 

21 
lim r 0 (t) = r0 (oo) = -r". 

t--+<XJ .6.p 

z 

("L2) 

( 3.:>) 

( 3.4) 

(3 . .5) 

( l 7) 

(.18) 

Substituting avjat in (3.1) by its average value in viscous~ pbstic region (the SliozkiHwTarg's 
approximation ( 1.3)} 

R 

. I I av cp(t) = .--- -dr, 
R- To at 

'" 
we obtain the following approximate equation 

( 
3 2 v J /Jv) To f:>.p 

P'P = ~ -, + -- -- + --
3r- r ar r £ 

( l.9) 

The solution of the equation (3.9) satisfying the boundary condition (3.2) and (3.:l) is 

6.p 2 2 P'P ( 2 2) To ( ) ( 6.p P'P To) r v(r,t) = -(R -r )-- R -r -~ R-r +r11 -ru---r11 -- ln-; 
4£~ 4~ ~ 2£~ 2~ ~ R 

r 0 ::: r <; R (3.10) 
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in which r 0 (t) and <p = <p(t) are not determined yet. 
For determining rp(t) we use the quasi-stationary principle, i.e. we approximate velocity profile 

(3.10) by,that of reSpective stationary steady flow, that is a semi-parabola with its vertex at r = r0 

Bv Bul [1]. Applying corollary 1 with -
8 

playing the role of f(x) and note that c = - , we obtain 
t at r=ro 

2 Bv I 'P(t) = --
- 3 at r=ro 

Combining (3.11) and the motion equation of elastic core (3.6) gives 

<p(t) = ~(6.p _ 2To) 
3 pi pro 

(3.11) 

(3.12) 

Substituting (3.12) into (3.10L we obtain the approximate solution of considered problem 

( 
l:::..p ro ) 2 2 ro ro ( 6.p r0 ) r v(r,t)= --+-- (R -r)--(R-r)+- ~r0 --ln-; 
12l~ 3ryro ry 3 U~ ry R 

(3.13) 

The velocity of flow in the elastic core is determined by (3.5) and will be 

( 
6.p To ) 2 2 To ro ( !J.p To) ro vo(t)=v(ro,t)= --+-- (R -r0 )--(R-ro)+- ~ro-- In-, 
12£~ 3ryro ry 3 Ury ry r 

r :S ro (3.14) 

From (3.6) and (3.13) we get the differential equation for determining the r.adius of elastic 
core: 

[ - _1()_(R2 _ r5) + 6.p (lnro)ro _To (Inr")] dro = 6.p _ 2To 
3ryr§ 3fry R 3~ R dt pi pro 

After separating the variables, yields: 

2 ( e ) 2 
ro 2 ( e ) 2 R 

2 2r0 - ln- + 2r0 - --

( roln ro + Tolin ro + Tof + I!_ + 6.p R 6.p 2 ) dro = 3~ dt 
R 6.p R 6.p 2r0 2 

f p 

Integrate (3.15) and note that 

ru ~ ro~ 
6.p 

2 2 (2ro£.)2 r0 > r0 (oo) = 6.P , 

we obtain the solution of equation (3.6) (or (3.15)) satisfying (3.7) (and (3.8)) as follows: 

1 1 ro r5(oo) 
::;(R2

- r5) + 2(R2 + roro(oo) + rG)ln R + -4~[(InR)
2 - (lnr0 )

2 ]+ 

1 2 2 R__:ro(oo) r6(oo)( ro) 
+-[R - r0 (oo)[In~--( -) + ~- lnR In[ro- ro(oo)]+ 

2 ro- ro oo 2 

(3.15) 

(3.16) 

By determining ro(t) from (3.16) and substituting it into (3.13) and (3.14) we obtain v = v(r, t) 
and vo = vo(t). The dischage of flow is determined as follows: 

R 

Q(t) = 1rr~v0 (t) + 21r I v(r, t)rdr (3.17) 

" ( ~p 7o ) ( 4 ') 7rTo 3 3 ro ( ll.p 7o) 2 2 =- -- + -- R - r0 - ~(R - r0 )-- ~ro-- (R - r0 ). 
2 12£ry 3ryro 3ry 6 2fry ry 
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in which ro = ro(t) is determined from (3.16}. 
c) Discussion 
With the approximation (1.2L Tiabin determined 

b.p 2To 
~?(t) = ·-c 

pt pru 

:r'(R ·r), < <R r11 ~ r _ , 
'I 

vnr(t) ~ ~'"-(!!'- rG)- j(,(R- ro), r S To 
2rr ""r) T) 

and the law of developing ela:-tic; ore· is determined by form1.Jla: 

in which 

- _ 1
1 

_ r,?(=) tr,(=)- 2 r 0 - r,,(=} 
t-- nro + ---~---·-----In - + 

6 12 1 ~ r,(oo) 

- ~ 
t~ -t 

pR2 ' 
ru(=) ~ ~,(oc_) 

R 
2£ To 

b.p R 

ir; l,::c i (ro .= 1_) 
12 

- ru 
ro = R 

For convenience of comparison, the laws of developing the elastic cores and the velocity profiles 
in both of the cases are expressed in Fig. 3 and Fig. 4 

06 06 r r, 

0.5 05 J,b,0/1 

T.M~O 
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0.4 0 4 ~r.O.U8S 
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,.,, / ~ 
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' ' ( 
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Fig. s Fig. 4 
Where------- (dash lines) for Tiabin's results {(3.21); (3.19) & (3.20)), 

____ (solid lines) for formulae (3.16); (3.13) & (3.14} and T = 
3~ t. 
p 

From Fig. 3 it follows that, the elastic core determined by the formula (3.16) is changed faster 
at first and later on it's changed more slow than Tiabin's one. However, Fig. 4 shows that the 
velocity determined by (3.13) or (3.14) are always bigger than the respective velocity determined 
by (3.19) or (3.20). 

When t ..------). oo, the elastic cores and velocity profiles in both of the cases are tended to the 
those of respective steady flow, i.e. the obtained results (3.13), (3.14) and (3.17} will be identical 

. tip 
to the well- known results of respective stea.dy flow Wtth ro = Zl ro(oo) [1, 6]. 

4. CONCLUDING REMARKS 

1. The problems on unsteady flows of viscous- plastic fluid belong to the class of problems with 
mobile boundaries. As far as we know, there were some solutions of problems on unsteady flow in 
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the pipe- line with certain concrete bounda.ry conditions or using the supplementary assumptions 
for the approximate function p(t) and the law of developing of elastic core [1, 2]. 

Note that, we always can write one condition at the shaded boundary expressing the motion 
equation of elastic Core in form 

ilvl = f(ro) at r=r" 

On the other hand, the velocity profiles of respective steady flows have been or can be de­
termined. Therefore, combining the quasi - stationary principle and Sliozkin-Targ's method we 
can solve a class of problems on unsteady flows of viscous-pli.stic fluid in pipe-line with higher 
approximations. 

2. The problem on unsteady flow with sublayer effect has two Jnobile boundary, hence, for 
solving it completely we need more a one equation, describing the law of development of sublayer 
5 = 5(t) (or R1 = R1 (t)- see its respective steady flow 14]). According to Smoldurev and other, the 
viscosity coefficient in sublayer f}n is substantially less than the coefficient of structural viscosity fJ 

of transport slurry (fluid- solid mixture), so the discharge of flow is increased considerably in the 
flow with the viscous sublayer effect near the wall. For the steady flow, this increased discharge 
showed in I 4 I is 

!:;Q = 1r/:;p(R4 - R4 ) (_!_- _lc) + 1r/:;p r (R3 - 1! 3 ) 

8 " l 6' () 1 c ry0 ry . cry 

consequently a economized energy is the energy ·using to transpOrt this mass (per uniJ of time). 
3. For solving the problem on one - dimensional unsteady pressure flow of viscous - plastic 

fluid between two infinite planes we need not to use t"he quasi-stationary principle [5]. 
This publication is completed with financial supPort froln the National Basic Research Pro­

gram in Nat ural Sciences. 
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VE MOT LaP cAc BAI TOAN DONG CHAY KHONG DlrNG 

CUA CHAT LONG NHUT-DEO TRONG ONG DAN 

Ke't"hqp nguyen lf tl!a dirng v&i tinh ch5:t ella profile v~n tOe trong chuy~n d9ng dlrng hrcrng 
&ng va. xap xi Sliozkin-Targ chllng t5i du:-a ra phucrng phip giii l&p cic bai toin chuy~n d9ng 
kh6ng dtrng cua chat !6ng nh&t-deo trong ong din. S& dung ph1rang phip nay chung t6i gi!ti bai 
toin chuy~n cH}ng c6 clp trong Ong hlnh tn~ n~m ngang, d.c ket qui nh~n dm:;:rc di dm;rc so sinh 
v&i Ht qua ella Tiabin trlnh bay trong 111. 
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