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NEW SIZE NUMBER AND THE FRACTURE STATE 
OF CONCRETE STRUCTURE 

V. TRANTU 
NCNST of Vietnam 

ABSTRACT. A new size number describing the fracture state of concrete structures is devel­

oped in which the structural size and the main fracture properties of concrete are dealt with. The 

relation between the fracture state of concrete beams loaded in bending and the newly proposed size 

number is presented graphicaUy. The shape of the stress·~ crack curve, which is a tyJ:ical property 

of most quasi-brittle composites like concrete, is found to be an important factor in determining the 

size number together with the fracture energy, the elastic modulus and the ultimate tensile strength 

of materials. The influence of 'the structural size on the fracture state is also ~aphically presented. 

1. INTRODUCTION 

As it has been empirically demonstrated that the .state of the crack propagation (stable or 
unstable) in concrete structures strongly depends on the structural size,. configuration and the 
fracture properties of materials. For structures made of the same material and with similar con­
figuration, differing only in the structural size, the structures of smaller size seems to be more 
ductile as subjected to a load. The fracture state of concrete beams in three-point bending has 
been proved well by Carpinteri (1986), [1] using the energybrittleness number (SE) as 

Gp 
SE=­

bf, 
(1.1) 

In which the influence of the beam size and some material fracture properties as the energy fracture 
(GF) and the tensile strength (!,) on the fracture state are covered. It has been demonstrated 
graphically (Fig.1) that the fracture mode changes from the more ductile state (SE is higher) to 
the more brittle one (SE is lower). However the number SE does not deal with the influence of 
the stress • crack opening relation (a- - w relation) which is a typical property of concrete and 
most quasi- brittle composite materials. As it has been well known that this relation changes for 
different composition of concrete and it is proved to strongly influence the fracture parameters 
in concrete structures (Carpinteri et a!., 1987; Duda and Konig, 1992; Roelfstra and Wittmann, 
1986; Tran tu and Kasperkiewicz, 1994). 

In the text the infiuence of the stress - crack opening curve on the fracture state of concrete 
;tructures is checked by theoretically analyzing the fracture state of concrete elements loaded in 
;he uniaxial tension and in bending. The general equation describing the fracture state is found. 
li'rom this equation the size numbers proposed by Carpinteri (SE), [1] and Hillerborg (b/tck), [6] 
rre obtained. A newly proposed size number is developed and it may be called the critical size of 
naterials. The numerical analytic results of the fracture obtained using the fictitious crack model 
"or beams in three-point bending have been proved to be good for determination of the fracture 
:tate by the new size number. 
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In order to follow the matters presented in the text, a new term called the shape index of 
"- w relation (ST) proposed by Tran Tu and Kasperkiewicz (1994), \14J is presented briefly. It is 
defined as follows: 

GF 
ST=-­

ftWc 
(1.2) 

We can consider some typical properties of the shape index ST. Using Eq. (1.2), it may be 
said that ST approaches infinity in case of elastic materials (we reduces to zero). For the plastic 
fracture materials ST equals 1 (in this case GF =Weft)· With concret.e when the a- w curve is 
taken to be mono-straight ST = 0.5 (GF = woft/2). From Eq. (1.2) we expect ST to be one of 
the parameters determining the shape of the a - w curve. . 
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Fig.!!. The fracture state of beam in three-point 

bending depends on the shape of the a - w curve 

. 2. FRACTURE STATE OF CONCRETE STRUCTURES 

According to Carpinteri (1990), \2J stable or unstable fracture state is defined by the slope of 
the post-failure branch of load-deflection diagram referring to the vertical direction. The following 
example shows that the size number SE is insufficient to estimate the fracture state. Fig. 2 gives 
three load-deflection diagrams taken from numerical fracture analysis for notched beam in three­
point bending with Gp = 40 IN/mJ, ft = 4 \MPaJ, E = 35000 \MPaJ with ST ranging between 
0.10 and 0.5 (as shown in Figure). In this case the value SE calculated from Carpinteri's proposal 
is constant: SE = 10-4 • As it has been seen in Figure, fracture state depends on the shape of the 
a- w curve. 

At first, let us study an uniaxial tensile specimen, (Fig. 3) in which a part B is assumed to 
be very short so that its boundary displacement is to the crack opening displacement. The total 
displacement of a system composing of the testing machine and the specimen ~ is determined as 

(2.1) 

where L and F are the length and cross-sectional area of the part A of specimen, E - elastic 
modulus, Cm- compliance of the &est machine, P- tensile load and w- boundary.displac.eme11t of 
the part B evaluated by the relation between the tensile stress and the crack opening displacement 
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, g(r7/ ft)w" that is the intrinsic fracture property of the material. In order to study the fracture 
.e of the specimen, let us differentiated with respect toP and denoting D.,= -8g/8(r7/ f,) as 

as L w, 
8P = Cm + EF - j,F., D., (2.2) 

!re Fw is the ~ross-sectional area at notch. -
The fracture state of specimen is determined by the value 86/8P. The stable state.occurs 

1n 86/8P < 0 and the unstable one when 86/8P;::: 0. Let us study the limiting state from the 
JWing 

{2.3) 

The influence of the stiffness of a testing machine on .the fracture state of a specimen is 
nulated in Eq. {2.2). With the machine controlled in loading well as in displacement, the first 
n in the right side of Eq. (2.2) can be neglected, we arrive at the following expression: 

w, D _ LF., 
j, w- EF {2.4) 

From Eq. {2.4) we can derive the size numbers proposed by Hillerborg and Carpinteri assuming 
t the f7- w curve is a mono-straight, this means that D., = -1, substituting GF = w,ft/2 and 
ring E to the left side, Eq. (2.4) becomes: 

(2.5) 

The term in the right side is the size number proposed by Hillerborg. Similarly, moving j, 
n the left side of Eq. (2.4) to the right side, we get 

GF Lf,F., LW,F., 
Fj, = 2EF2 = 2j,F2 (2.6) 

The right side of Eq .. {2.6) represents the elastic strain energy stored in body divided by 
maximum tensile load and the energy brittJeness number proposed by Carpinteri derived. The 

,ye has proved that use of the size numbers proposed by Hiller borg and Carpinteri for simulation 
,he effect of the size on the fracture parameters and fracture state is only an approximation. 
~was shown clearly in Fig. 2. Previous investigations (Hillerborg 1987,[7[; Carpinteri 1990, [2[; 
Lnd Liang 1992, [9]) proved that the maximum load reached for the crack opening displacement 
.bout 1/3 to 1/2 of w,. Therefore in order to study the fracture state, the value. D.; is taken 
r this range. As it has been seen in Fig. 3b, Dw increases with decreasing the shape index ST, 
approximate replacement of D., = 1/ ST in Eq. (2.4) we arrive at the following equation 

EGF LF., 

f 2S2 = F 
t T 

{2. 7) 

which, the ratio L/ F represents the slender and F.,/ F represents the notched length of a 
cimen. The term in the left side of Eq. {2.7) is a function of the fracture properties, on' the 
er hand the term on the right side is a function of the .characteristic size of the specimen. Taking 
left side of Eq. {2.7) to be a term having the dimension [LJ and denoting L, as 

GFE 
L, = (f,ST)2 {2.8) 

The above results are obtained from the uniaxial tensile specimen, we need to know how they 
Lave in elements loaded in bending. Let us assume that a notched beam subjected to bending 
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load P, notched length is a, span and depth of the beam is £ and b respectively, length of the 
fracture process region is £.,, cohesive forces is Pc. The deflectionS at tile mid-span of the beam is 

. determined from the following equation: 

(2.9) 

where C= is the compliance oUhe test machine,.C2 and Ca- compliancies of the specimen caused 
by the action of P and Pc respectively. The value of Pc is determined from··Fig. 4 by putting 
iF = i.,fb and z = xfb: 

L, 

Pc = I f(wfwc)f,bdz {2.10) 
c 

in which zCaxis coincides with the crack growing direction and a function u/ft = f(wfw0 ). 

X 
p 

Pc b 

b) 

we w 
Fig. 9. A specimen loaded in tension and 

a bilinear diagram of the U - W curve 
Fig. 4.. A speciment loaded in bending and 

the distribution or cohesive forces 

The value w is determined by the superposition of P and Pc: 

(2.11) 

where, C4 and C5 are compliancies of the specimen in different cases of the studied point. Derivative 
5 with respect to P and substituting (2.10), (2.11) into (2.9): 

putting: 

L Jc4dz 
as o 
ap = Cm + c2 + c.---"-'---...--,L=-f--

ftbf(w/wc) 

L, 

1 Cadz, 
0 

D '= I Csdz = D G , ~c) 
0 
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we derive the following formula: 

(2.13) 

The left side of Eq. (2.13) similar to Eq. (2.4) is Ls, whereas the length of the fracture process 
zone has a functional relation with Ls, formally we can derive an expression as 

(2.14) 

where .>. is the slender of beam and .>.P is a coefficient depending on the loading position. 
Again we can see that the term in the left side of Eq. (2.14) is Ls, Whereas the right side only 

describes the dependence of the beam size on the loading condition. The term Ls is described by 
Eq. (2.8) and depends only on the intrinsic fracture properties of materials. Remembering that 
Eqs (2.4) and (2.14) express the limiting fracture state, Ls may thus be called the critical size of 
materials. As it has been seen in Fig. 5 the fracture state of a beam depends on the critical size of 
materials (Ls/b changes from 1.75 to 26.25). 
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Fig. 5. The dependence of the fracture state of the critical size of concrete 

3. PRESENTATION OF THE FRACTURE STATE IN NOTCHED BEAMS 

3.1. Numerical experiment 
Important in the fictitious model for creating the cohesive forces and controlling them in the 

crack propagating process. The cohesive forces are calculated by steps based on the stress-crack 
opening relation. This relation were formulated by many researches such as. Reinhardt (1984), [11]; 
Gopalaratnam and Shah (1985), [5); Cornelissen eta!. (1987), [3) and Tran Tu and Kasperkiewicz 
(1994), [14). As it is replaced by multi-linear diagrams as by Hillerborg et a!. (1976), [6); Peterson 
and Gustarsson (1981), [10); Roe!fstra and Wittmann (1986), [12); Carpinteri (1987), [1); etc. As· 
it has been proved by Tran Tu and Kasperkiewicz (1994), [14) that the load-del!ection diagrams 
for beams in bending obtained by applying the equations of Cornelissen et a!., Gopalaratnam and 
Shah, Tran Tu and Kasperkiewicz and the consistent bilinear diagrams, are rather similar. Iri this 
text Equation describing the stress-crack opening curve proposed by Tran Tu and Kasperkiewicz 
(1994) is used: 

::._ = (1- A)(1- xk) + A(1- x)lfk 
!t 
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w 
X= 

where the coefficient A is chosen to be 0.5. The change of A may be offset by changing the shape 
index ST which does not have much influence on the obtained results. The use of Eq. (3.1) is 
convenient fOr covering the influence of the stresS.crack opening curve on the fracture parameters 
in concrete structures. In which a change is only in the shape index Sr that is consi<lered to be 
the intrinsic fractwe property of concrete. 

Numerical approach can be presented in brief as follows: 
1) Calculating the load where the micro crack starts developing. The length of the real crack 

is the notched length. The fracture criterion of the critical stress intensity factor is employed. 
2) Calculating the crack extension, the maximum main stress criterion is used. The fictitious 

crack length is assumed to increase by steps until the total length of the real crack and the fictitious 
crack reaches the crack ligament. The cohesive forces are calculated according to the u- w relation 
by iteration. They are controlled by the critical deviations of two neighboring steps, not larger 
than the specific value (it is specified here about 0.01 [NJ). It has been proved (Tran Tu and 
Kasperkiewicz, 1994) that the load-deflection diagrams will be discrepant if the shape of the u- w 
cUre is missing. 

3.2. Fracture state of concrete notched beams in bending 
In this chapte:f the illustrations on the fracture state in the concrete notched beams in three~ 

point bending is presented. It includes the influence of the material fracture properties and the 
beam depth through the critical size to beam depth ratio (Ls /b). 

1) Arrangements are made, that include the change of the fracture energy GF from 20 [N/m] 
to 180 [N/m] and the shape index ST from 0.1 to 0.9. the unchanged factors are the tensile strength 
ft = 4 [MPa], the elastic modulus E = 35000 [MPa[, the beam sizes: depth b = 100 [mm], span 
l = 800 [mm[, the thickness of unit is chosen. ·Fig.6 is plotted for GF = 20- 180 [N/m] and 
ST = 0.3. The ratio Ls /b and the energy brittleness number SE are calculated and presented in 
the figure. In this case we can see that the fracture state becomes more ductile with the increase 
of the Ls and SE similar to the results obtained by Carpinteri (1990). 

40 

35 

30 
~ 

~25 

320 
"0 
& 1 ~ 

...., ) 

10 

5 

0 

0 0.2 

BEAll-1 IN THREE • POll'JT B~N~ 
llb=8,a/b=0.20,b=lOO[mm]. 

0.4 0.6 0.8 
Del. (in [mm]) 

Fig. 6. The dependence of the fracture state on the critical size with the changing fracture energy 

The change of the shape index ST is presented in Fig. 7. The values Ls Jb and SE are also 
calculated and presented in graphs. We can see that the fracture state becomes more brittle as the 
value SE incre_3.ses contrarily to the conclusion of C_arpinteri. In this case the value Ls decreases 
in accordance with the theoretical prediction. 
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Fig. 1. The dependence of the fracture state on the critical size with the changing shape of the 0'- W curve 

2) In the second case the dependence of the fracture state on the Ls with the change of elastic 
modulus of concrete is studied. Three load-deflection diagrams are plotted with the same G F = 80 
[N/m], f, = 4 [MPa] and We= 0.05 [mm]. The values of the elastic modulus are shown in Fig.8. 
We can see clearly in the figure that the fracture state becomes more brittle with the increase of 
elastic modulus. 
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Fig. 8. The dependence of the fracture state on the elastic modulus of concrete 

3) The last, the effect of the change in the beam depth is studied and otherwise unchange. 
This is a case that was noted by many researches. The change of beam depth between 100 [mm] 
and 400 [mm], the fracture energy of 80 [N/m] and Sz of 0.4 are chosen. We can see clearly that 
the fracture state becomes more brittle with increasing beam depth (Fig. 9). 

4. CONCLUSION 

The critical size Ls may be considered as the intrinsic fracture property of concrete and similar 
materials. It characterizes the fracture state (stable or unstable) of concrete structures. 
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Fig. 9. The fracture state changes in accordance with the changes of beam depth 
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HE SO ANH Hl!ONG KICH THU"OC MalVA TRANG THAI 
· PHA ml'Y cuA KET c.Au BE TONG · 

M.;>t h~ si) !nh htrlrng kich thucerc etta k~t cilu be tong dtrqc phat hi~n trong d6 kich thtrerc 
cda k.tt diu va tinh chiit pha htty cda v~t li~u dtrqc th~ hi~n trong cong thU,c. Bhg dl\ thi, tac 
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vao si) kich thtr<'rc mCri nay. Hlnh di!Jlg cda dtr1mg cong Ucng suO:t - do$ m& v.ft nU,t (,. - w), day Ia 
m{>t 'tfnh cha:t- di~n hinh cda v~t Ii~u be tOng va cac v~t Ii~u composite tU"ang tl!, d3. d11'9'c chi ra 
nhtr Ia mgt y.tu ti) d~c bi~t quan trqng inh htrlrng d.tn tr~ng thai pha hdy. Ngoai ra vai tro quan 
trqng etta cac tinh chiit pha hity khac etta be tong nhuc mo dun dim hl\i E, nang l1rqng pha hdy 
G F ciing dtrqc thi! hi~n tit Mt qua ph an tich ph:i hdy. 
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NGHIEN cuu ANH HtrONG CllA QUY D~O BIEN D~NG 
DEN DUONG CONG GIG! H~N HINH THANH 

M'!c dich nghien cUcn lr day lit dv: doan !nh htrlrng cda qiiy d~o bi.tn d~ng Mn du-0-ng cong 
giCri h\tn hlnh thanh, tit bi~u dli Ucng su11t giCri hi!Jl. Chung ta se nghiiln cw qiiy d;,w cilu t~o til­
hai doi!Jl thitng ttrang li-ng veri cac giai doi!Jl: keo dung tam - dan d~u ho~c ngtrqc I(li. 
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