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NEW SIZE NUMBER AND THE FRACTURE STATE
OF CONCRETE STRUCTURE

V.TRAN TU
NCONST of Vietnam

ABSTRACT. A new size number describing the fraciture state of concrete structures is devel-
oped in which the structural size and the main fracture properties of concrete are deali with. The
relation between the fracture state of concrete beams loaded in bending and the newly proposed size
number is presented graphically: The shape of the stress - crack curve, which is a typical property
of most quasi-brittle composites like concrete, is found to be 2n important factor in determining the
size number together with the fracture energy, the elastic modulus and the ultimate tensile strength
of materials. The influence of the structural size on the fracture state is also graphically presented,

1. INTRODUCTION

As it has been empirically demonstratéd that the state of the crack propagation (stable or
unstable) in concrete structures strongly depends on the structural size, configuration and the
fracture properties of materials. For structures made of the same material and with similar con-
figuration, differing only in the structural size, the structures of smaller size seems to be more
ductile as subjected to a load. The fracture state of concrete beams in three-point bending has
been proved well by Carpinteri (1986), (1] using the energy brittleness number (Sg) as

Sp = f—}‘;- (1.1)

In which the influence of the beam size and some material fracture properties as the energy fracture
{Gr) and the tensile strength (f;) on the fracture state are covered. It has been demonstrated
graphically (Fig. 1) that the fracture mode changes from the more ductile state (g is higher) to
the more britile one (Sg is lower). However the number Sg does not deal with the influence of
the stress - crack opening relation (o — w relation) which is a typical property of concrete and
most quasi- brittle composite materials. As it has been well known that this relation changes for
different composition of concrete and it is proved to strongly infleence the fracture parameters
in concrete structures (Carpinteri et al., 1987; Duda and Konig, 1992; Roelfstra and Wittmann,
1986; Tran tu and Kasperkiewicz, 1994).

In the text the influence of the stress - crack opening curve on the fracture state of concrete
structures is checked by theoretically analyzing the fracture state of concrete elements loaded in
she uniaxial tension and in bending. The general equation describing the fracture state is found.
From this equation the size numbers proposed by Carpinteri (Sg), {1] and Hillerborg (b/2cp), {6]
ire obtained. A newly proposed size number is developed and it may be called the critical size of
naterials, The numerical analyiic results of the fracture obtained using the fictitious crack model
or beams in three-point bending have been proved to be good for determination of the fracture
tate by the new size number. ‘ '
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In order to follow the matters presented in the text, 2 new term called the shape index of
o — w relation (Sr) proposed by Tran Tu and Kasperkiewicz {1994}, {14] is presented briefly. It is
defined as follows:

- ftwc

St (1.2)

" . We can consider some typical properties of the shape index Sy. Using Eg. (1.2), it may be
said that Sy approaches infinity in case of elastic materials (w, reduces to zero). For the plastic
fracture materials St equals 1 (in this case GF = w; f;). With concrete when the ¢ — w curve is
taken to be mono-straight S = 0.5 (Gr = w,.f:/2). From Eq. {1.2) we expect Sy to be one of
the parameters determining the shape of the o — w curve. '
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bending and the energy brittle number Jg (2] bending depends on the shape of the & — W curve

. 2. FRACTURE STATE OF CONCRETE STRUCTURES

According to Carpinteri {1990), [2] stable or unstable fracture state is defined by the slope of
the post-failure branch of load-deflection diagram referring to the vertical direction. The following
example shows that the size number Sg is insufficient to estimate the fracture state. Fig.2 gives
three load-deflection diagrams taken from numerical fracture analysis for notched beam in three-
point bending with Gr = 40 [N/m], f, = 4 [MPa], E = 35000 [MPa| with Sr ranging between
0.10 and 0.5 (as shown in Figure). In this case the value Sg calculated from Carpinteri’s proposal
is constant: Sg = 107%. As it has been seen in Figure, fracture state depends on the shape of the
o — w curve.

At first, let us study an uniaxial tensile specimen, (Fig.3) in which a part B is assumed to
be very short so that its boundary displacement is to the crack opening displacement. The total
displacement of a system composing of the testing machine and the specimen d is determined as

L
5=C'mP+ 'E?P-l'w (2.1)

where L and F are the length and cross-sectional area of the part A of specimen, £ - elastic
 modulus, C,,, - complianceof the test machine, P - tensile load and w - boundary displacement of
the part B evaluated by the relation between the tensile stress and the crack opening displacement
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: g{o/ fi)w., that is the intrinsic fracture property of the material. In order to study the fracture
. of the epecimen, let us differentiate d with respect to P and denoting D, = —8g/8(c/ fs} as

a4 c L W,

2 _ Lo e 2.
5p-Cmtgr R Dv R

wre F,, is the cross-sectional area at notch. -

The fracture state of specimen is determmed by the value 9% /OP. The stable state occurs

m 86 /3P < 0 and the unstable one when 35/3P > 0. Let us study the limiting state from the
wing . L
We

—D, =C, —_ 2.3

fiFa ™+ EF (2:3)

The influence of the stiffness of a testing machine on the fracture state of a specimen is

nulated in Eq. {2.2}. With the machine controlled in loading well as in displacement, the firs
n in the right side of Eq. (2.2) can be neglected, we arrive at the following expression:

__LF,
.D —_— 2.4
7. Do = FF (2.4)
From Eq. (2.4) we can derive the size numbers proposed by Hillerborg and Carpinteri assuming
t the o — w curve is 2 mono-straight, this means that D, = ~1, snbstituting Gr = w.f; /2 and
ring E to the left side, Eq. (2.4) becomes:

GgpE LF,
FE 2k @8

The term in the right side is the size number proposed by Hillerborg. Similarly, moving f;
n the left side of Eq. {2.4) to the right side, we get .
Gg LfiF, LW.F,

Ff. = 2EF? ~ 2f,F? - @)

The right side of Eq. (2.6) represents the elastic strain energy stored in body divided by
maximum tensile load and the energy brittleness number proposed by Carpinteri derived. The
ve has proved that use of the size numbers proposed by Hillerborg and Carpinteri for simulation
.he effect of the size on the fracture parameters and fracture state is only an approximation.
g was shown clearly in Fig. 2. Previous investigations (Hillerborg 1987,[7]; Carpinteri 1990, [2[;
wnd Liang 1992, {9]) proved that the maximum load reached for the crack opening displacement
bout 1/3 to 1/2 of w,. Therefore in order to study the fracture state, the value D, is taken
r this range. As it has been seen in Fig. 3b, D, increases with decréasing the shape index ST,
approximate replacement of Dy, = 1/S7 in Eq. (2.4) we arrive at the following equation

EGr LF,
fur Ly T
82 F (1)

which, the ratio L/F represents the slender and F,/F represents the notched length of a
cimen. The term in the left side of Eq. (2.7} is a function of the fracture properties, on'the
er hand the term on the right side is a function of the characteristic size of the specimen. Taking
left side of Eq. (2.7} to be a term having the dimension [L] and denoting L, as

_ GrE
B (ftST)_z

The above results are obtained from the uniaxial tensile specimen, we need to know how they
tave in elements Ioaded in bending. Let us assume that a noiched beam subjected to bending

(2.8)
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‘ load P, notched length is a, span and depth of the beam is £ and b respectively, length of the
fracture process region is £, cohesive forces is P,. The deﬂect.lon § at the mid-gpan of the beam is
-determined from the following equation:

§=CmnP+CoP+CsP ' (2.9)

where C,, is the compliance oﬂhe test machine, Cp and Cj; - compliancies of the specimen caused
by the action of P and P, respectively. The value of F, is determined from Fig. 4-by putting
bp =14, /b a.ndz--a:/b ‘
Lp ‘ o
Po= [ ftw/u,) fibds o)

L]

in which z-axis coincides with the crack growing direction and a function o/ f; = f(w Jwe).

-aP—_» l .P‘- - = 4 i e

i

Fig. 8. A specimen loaded in tension and ‘ : Fig. §. A speciment loaded in bending and
a bilinear diagram of the ¢ — W curve the distribution of cohesive forces

The value w is determined by the superposition of P and F,:

where, Cy and Cj are compliancies of the specimen in different cases of the studied point. Derivative
& with respect to P and substituting (2.10}, (2.11} into (2.9):

L
/, C4d2

as 5 '
EY: =Cm+Ca+Cs T L; ‘ (2' 12)
W, .
— <~ [ Cadz
Febf(w/w,) of 205
putting: . ,
’ L Ly I
— C. ¢
Cadz = (b’b)’ D /05dz'D(b’T)
0 0




we derive the following formula: o
1 We 3 )
——D,==A-D 2.13
Akt A (2.13)
The left side of Eq. (2.13) similar to Eq. {2.4) is L, whereas the length of the fracture process
gone has a functional relation with Lg, formally we can derive an expression as

EBEG e . '
Ui = (502208 (214

where ) is the slender of beam and 1}, is a coefficient depending on the loading position.

Again we can see that the term in the left side of Eq. (2.14) is Ly, Whereas the right side only
deseribes the dependence of the beam size on the loading condition. The term Lg is described by
Eq. (2.8) and depends only on the inttinsic fracture properties of materials. Remembering that -
Eqs (2.4} and (2.14) express the limiting fracture state, Ls may thus be called the critical size of
materials. As it has been seen in Fig. 5 the fracture state of a beam depends on the critical size of
materials (Lg /b changes from 1.75 to 26.25).
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Fig. 5. The dependence of the fracture state of the critical size of concrete

3. PRESENTATION OF THE FRACTURE STATE IN NOTCHED BEAMS

3.1. Numerical experiment

Important in the fictitions model for creating the cohesive forces and controlling them in the
crack propagating process. The cohesive forces are calculated by steps based on the stress-crack
opening relation. This relation were formulated by many researches such as Reinhardt (1984}, [11];
Gopalaratnam and Shah (1985), [5]; Cornelissen et al. {1987), [3] and Tran Tu and Kasperkiewicz
(1994), [14]. As it is replaced by multi-linear diagrams as by Hillerborg et al. (1976), [6]; Peterson
and Gustarsson (1981}, [10]; Roelfstra and Wittmann (1986), [12]; Carpinteri (1987), {1]; etc. As’
it has been proved by Tran Tu and Kasperkiewicz (1994}, [14] that the load-deflection diagrams
for beams in bending obtained by applying the equations of Cornelissen et al., Gopalaratnam and
Shah, Tran Tu and Kasperkiewicz and the consistent bilinear diagraims, are rather similar. In this
text Equation describing the stress-crack opening curve proposed by Tran Tu and Kasperkiewicz
(1994) is used: ' '
x o -;1= (1— A)(1 - 2%} + A(1 = 2)/* (3.1)
t
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w _ ST

w,' T 1-8yp

where the coefficient A is chosen to be 0.5. The change of 4 may be offset by changing the shape
index S7 which does not have much influence on the obtained results. The use of Eq. (3.1) is
convenient for covering the influence of the stress-¢crack opening curve on the fracture parameters
in concrete structures. In which a change is only in the shape index S7 that is considered to be
the intrinsic fracture property of concrete.

Numerical approach can be presented in brief as foilows ’ o

1) Calculating the load where the micro crack starts developing. The length of the real crack
is the notched length. The fracture criterion of the critical stress intensity factor is employed.

2) Calculating the crack extension, the maximum main stress criterion is used. The fictitious
crack length is assumed to increase by steps until the total length of the real crack and the fictitious
crack reaches the crack ligament. The cohesive forces are calculated according to the o — w relation
by iteration. They are controlled by the critical deviations of two neighboring steps, not larger
than the specific value (it is specified here about 0.01 [N]). It has been proved (Tran Tu and
Kasperkiewicz, 1994) that the load-deflection diagrams will be discrepant if the shape of the o — w
cure is missing.

3.2. Fracture state of concrete notched beams in bending

In this chapter the illustrations on the fracture state in the concrete notched beams in three-
point bending is presented. It includes the influence of the material fracture properties and the
beam depth through the critical size to beam depth ratio (Lg/b). _

1) Arrangements are made, that include the change of the fracture energy Gy from 20 [N/m]
to 180 {N/m! and the shape index Sr from 0.1 to 0.9. the unchanged factors are the tensile strength
ft = 4 {MPa, the elastic modulus E = 35000 [MPa|, the beam sizes: depth b = 100 [mml, span
£ = 800 [mm)|, the thickness of unit is chosen. Fig.6 is plotted for Gy = 20 — 180 {N/m] and
St == 0.3. The ratio Ls/b and the energy brittleness number Sy are calculated and presented in
the figure. In this case we can see that the fracture state becomes more ductile with the increase
of the Ls and Sg similar to the results obtained by Carpinteri {1990).
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Fig. 6. The dependence of the fracture state on the critical size with the changing fracture energy

The change of the shape index St is presented in Fig.7. The values Lg/b and Sp are also
calculated and presented in graphs. We can see that the fracture state becomes more brittle as the
value Sg increases contrarily to the conclusion of Carpinteri. In this case the value Ls decrea.ses
in accordance with the theoretical prediction.

45



—_— — D []
[ Lh [ n
——

Load (in (N])

Wh

BEAM IN THREE - POINT BENDING

1/b=8a/b=020,b=100,t=1 fmm] '

CLL fp=4375,8 = 5E-5
s E
2.L_‘h=2i88,5 =TGE-5
s E
" 3L /b=1458,5 =I5E-§
3 [

4L _'b=1094,§ =20E-5
s E

.

2 T
—

5.L /b= 873,3 _=23E-}
3 E

6.L /b= 6.25,§ =35E-5
s E

[
[ R

0.1

03 0.4 0.3
Def. (in [mm])

02

0.6

F ig; 7. The dependence of the fracture state on the critical size with the changing shape of the ¢ — w curve

2} In the sécond case the dependence of the fracture state on the Lg with the change of elastic
modulus of concrete is studied. Three load-deflection diagrams are plotted with the same Gp = 80
[N/m], fy =4 [MPa] and w, = 0.05 [mm]. The values of the elastic modulus are shown in Fig.8.
We can see clearly in the figure that the fra.cture state becomes more brittle with the increase of

elastic modulus.
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Fig. 8. The dependence of the fracture state on the elastic modulus of concrete

3) The last, the effect of the change in the beam depth is studied and otherwise unchange.
This is a case that was noted by many researches. The change of beam depth between 100 [mm]
and 400 [mm)], the fracture energy of 80 [N/m| and Sg of 0.4 are chosen. We can see clearly that
the fracture state becomes more brittle with increasing beam depth (Fig.9).

4. CONCLUSION

The critical size Lg may be considered as the intrinsic fracture property of concrete and similar
materials, It characterizes the fracture state {stable or unstable) of concrete structures.
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HE 56 ANH HUGNG KICH THUGC MG1 VA TRANG THAI
PHA HUY cUA KET CAU BE TONG

Mét hé 38 dnh hwéng kich thwée cla két ciu bé téng dwoc phat hidn trong dé kich thuwéc
cta két ciu vi tfnh chit phi hdy cda vit liéu dwoc thé hién trong céng thic. Bing dd thi, tic
gi4 chimg mink dwyc sy phu thude l6n cda trang thdi phd hdy cda dim bé téng chiu udn ba diém
va0 88 kich thwéc méi niy. Hinh dang cda dwdng cong fng suit - 46 mé vét nit (0 — w), diy 1a
mét tinh chdt dién hinh cda vit lidu bé tdng vi cdc vit liéu composite twong tw, di dwoe chira
nhw 14 mdt y&u t8 dic biét quan trong dnh hwéng dén trang thii phi hdy. Ngoiira vai ird quan
trong clda cic tinh chit phd hdy khic cda bé tdng nhw mé dun dan hdi E, ning lwong phd hdy.
Gr cling dwge thé hién tir k&t qud phin tich phd hiy.

DETERMINATION DE L’INFLUENCE DU TRAJET ...

{tiép theo trang 39)
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NGHIEN CUU ANH HUONG CUA QUY DAO BIEN DANG
DEN DPUONG CONG GIOT HAN HINH THANH

Muc dick nghién ctu & diy 13 dr doin dnh hudng cia qiiy dac bién dang dén dwdng cong
gi6i han hinh thanh, tir biéu d% Gmg suit giéi han. Chdng ta s& nghién ctru gily dao cfu tao tir
hai doan thing twong Gng véi cic giai doan: kéo ding tim - din d8u ho¥c ngwoc lai.
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