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PRINCIPLE OF COMPATIBILITY APPLIED TO
- DETERMINATION OF REACTION FORCES
OF KINEMATICS PAIRS
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ABSTRACT. The aim of investigation is to present the principle of compatibility and fo apply
it for determining the reaction forces of kinematics pairs in mechanigm. For this purposge the system
is released from the given constrains. This resulted to increase the number of coordinates of the
system. In order that the freed system realizes the motion of the given gystem, the coordinates of
the freed system must satisfy some relations called the constraint equations. The reaction forces of
the formed constrainis are just the reaction forces, which are of interest to us. -

1. INTRODUCTION

As known, in order to write the equations of motion of a constrained mechanical system, it is
possible to apply the principle of compatibility [1, 2]. The reaction forces of constrains acting on
the system are determined by a closing set of algebraic equations. By mean of this, the motion of
the system is described by differential equations, but that not by algebraic - differential equations.

However there is difficulty of the calculation of Christofell symbols {of three indices) of first
kind (1, 2]. '

In this paper it is presented the method which allows to surmount this difficulty. By means
of mentioned advantage this method iz applied fruitfully to determination of reaction forces of
kinematics pairs in mechanisms.

2. THE PRINCIPLE OF COMPATIBILITY AND EQUATIONS OF MOTION
OF A CONSTRAINED MECHANICAL SYSTEM

Let us consider a mechanical system of N particles, the coordinates and masses of which are
denoted by i, my respectively {k = 1,3N), where: mgy = mgp—1 = mak_2.
Let further the forces acting on the particle My be z; and the constraint equations be of the
form : ' ’

> barfptba=0; a=T3s
which are written in the form: o
| ' ' ‘bX+by=0 : (2.1)

where X is the 3N x 1 matrix of accelerations; b - the s x 3N matrix; by - the s X 1 matrix. The
elements of two last matrices are the functions of coordinates and velocities of particles.

The constraints (2.1) impose the restrictions on the positions, velocities and accelerations of
particles of the considered system. '

28



As known, the equationa of motion of the free system are of the form:
Mi=X {2.2)

where M is the 3N x 3N diagonal matrix of the elements my (k=1 3N) X(t,%,%) - the 3N x 1
matrix of applied forces. : : —

... Equations (2.2) do not satisfy the constraint equations (2.1). By followmg the pnnc1ple of
compat1b1hty {1, 2] the equations of motion of the system with constraints (2.1) must be written

in the form:

MX = X(t,x, %) + X* (2.3)

where X* is the 3N x 1 matrix of unknown reaction forces generated by the constraints (2.1).
Equations {2.3) will describe the motion of the consxdered system if and only if the matnx X+

satisfied the following equation:
BX* + By =0 (2.4)

where B is the s X 3N matrix of the form:
"B=bM % Bi=by+BX; M 'M=E

E is the unit matrix.
This means that the action of the constraints imposed on the system can be repla.ced by the
reaction forces acting on particles of the system.
In such a manner we obtain a set of s equations of 3N unknowns X; (k = 1,3N; s < 3N).
For supplementing to the equations (2.4) we concern to the condition of 1dea.hty of constraints
{2.1), that is: '
' XTsk =0 (2.5)

where §% is the matrix of virtual displacements, X7 - the transpose of the matrix X*
It is easy to prove that the variational equation {2.5) is equivalent to (3N — s) equations:

dX* =0 | | (2.6)

where: dx,X) is the (3N — ¢) x 3N matrix, the elements of which are the coefficients in the term
of the expressions of accelerations represented through independent accelerations.

In the results we get 3N algebraic equations (2.4), {2.6) of 3N unknowns X; (k = 1,3N).
Solving these equations we obtain: :

Xi (¢, zx, ) (2.7}
By substituting (2.7) into (2.3) we have:
Mx = X(t, x, %) + X" {t,x,%) (2.8)

which describes the motion of the system with constraints {2.1).
Integrating the equations (2.8) with the given initial conditions we get: zx = zx(t) and
substituting into (2.7) we obtain:

X, = Xp{t, zx(t), 2k (t)) = Xi(2)
which are just the reaction forces of the constraints (2.1) acting on the considered system.
Let us consider now a mechanical system with holonomic coordinates ¢; (£ = 1,n). The
constraint equations in this case take the form:

bd+by =0 | (2.9)
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where b is an ¢ X n matrix, but bp-asx 1 matrix; The elements of these matrices are functions

of coordinates and velocities, i.e. b = b{q, q}; bo = be(q, g).

Suppose that the considered system has the matrix of inertia A, which is an n x n positive
define symmetric matrix. The elements of this matrix depend only on generalized coordinates, i.e.
A = A(q), where q is an n X 1 matrix of generalized coordinates, i.e.

¢ =laga- ol '. (2.10)
The expression of the kinetic énergy of the system is of the form:
1.7..
=34 Aq (2.11)
where q is the n x 1 matrix. of generalized velocities, but q7 is the transpose of the matrix q, i.e.:
T = ldrda . dul (2.12)
Denote the generalized forces of applied forces by Q:(t, g5, 4;) and Q be the column matrix of these

forces, i.e.
=[1@:1Q3...Qnll (2.13)

As known, the motion of the freed system, i.e. of the system without constraints (2.9), can be
described by equations [3].

A:l - G(q: Q) = Q(t: q, ‘.1) . : (214)

where G is the n x 1 matrix, which has the form:

G = ('].*Goqo (2.15)

but q* isthe n x n diagonal matrix, the principle diagonal of which are of the form (2.12), L.e.

g1 42 ..« 4o O O ... O ... O O .. O
) 0 0 ... 0 ¢ d3 .. Gn ... 0 O ... O
qQ=1. . . . .. L. ) (2.16)
0 0 ... 0 0 0 ... 0 ... g dzg ... dn

4% is the 1 x n? matrix consisting of n lines of (2.12) placed in series of a line, i.e.

a7 = |ldida- .. Gngida. cG1dz .-Gl (2.17)

G, is the n? x n? matrix, which is a cage diagonal matrix, consisting of square cages of n X n

dimensions, i.e.
Goy

Goz
Go

i

Gos ' - (2.18)

GDN

The elements of the matrix Goi (k = 1,n) are calculated by means of the elements of the
mafrix of inertia.

Evidently, the equations (2.14) do not satisfy the constrainis (2.9). In accordance with the
principle of compatibility the equations of motion of the system with constraints (2.9) must be
written in the form [2] ‘
AG-G=Q+ Q" (2.19)
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where Q* is the matrix of reaction forces of constraints {2.9) acting on the considered system.
By the principle of compatibility the Qf (i = 1, n) are determined by the equations:

BQ"+By=0 (2.20)
where B is the 5 X n matrix of the form
e o . B=DbA™h C - (2.21)
A" is the inverse of the matrix of inertia A and By is the s X 1 matrix of the form:
| By =B(Q+G)+bo o {(2.22)

We obtain s algebraic equations (2.22) containing n unknowns Q; (¥ =1,n,5 < n)
It is necessary to supplement (n X s) equations to the equations (2 22] To do this let us
concern the condition of ideality of the constraints {2.9} which give us:

DQ* =0 (2.23)

where D is the (n — s) X n matrix, the elements of which are the coefficients in the expressions
of the generalized accelerations written in the form of independent generalized accelerations by
solving the equations (2.9).

By means of (2.20} and (2.23) we get a closing set of equations, which allow to find the reaction
forces Q7 (¢, g7, d;) and substituting them into (2.9} we have:

Ad+G=Qtq,4q) +Qtq,q9) (2.24)

Equations (2.24) describe the motion of the system with the constraints (2.9)

3. APPLICATION OF THE PRINCIPLE OF COMPATIBILITY FOR
DETERMINING THE REACTION FORCES OF KINEMATICS PAIRS

The determination of reaction forces at the kinematics pairs of mechanism plays an impertant
role in dynamics of machines. Usually, this problem is realized afier the step of determining the
motion of the system. By applying the principle of compatibility the reaction forces of constraints
can be determined independently with respect to the construction of equations of motion. The
discovery of the class of reaction forces will help us deep to know the action of the given constraints.
This is useful in many technical application. such as, in the control theory, in the investigation of
stability of motion of a multibody system... Of course, the reaction forces depend on the occurred
motion of the considered system, i.e. on the solution of the differential equation (2.24) with the
given initial conditions. In other words, the rea,ctmn forces acting on the given system are the
functions of the time, i.e. QF = Q7 (¢, a:(t}), &(t)) = Q7 (¢).

Let us apply now the mentioned method for computing the reaction forces of kinematics pairs.
For this purpose let us release (partially or wholly) the given constraints from the considered system

and replace the action of released constraints by the reaction forces. In other words the considered '

system is then assumed to be without constrainis and gemerating reactions, which are of interest
to us. The number of degrees of freedom of the freed system, will be increased. Corresponding to
this it is necessary to introduce some new coordinates being equal the increased number of degrees
of freedom. In order that the freed system is equivalent to the given system, the generalized
coordinates must satisfy some relation called the constraint equations. In other words, the given

constrained mechanical system is treated as the released system realizing the constra.mts Just

established. For illustration let us consider the following example.
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EXAMPLE. A pendulum is suspended from a slider as shown in Fig. 1. The slider has the
mass of my sliding on horizontal ground without friction the radius of inertia of the pendulum
about its center of mass C (OC = a) is of p i.e. I. = mp?, where I, is the moment of inertia of the
pendulum about C. Assume that there is the force F acting on the slider in horizontal direction.
- Determine the reaction force generating by the ground acting on the slider

i

i
Mg

Fig. 1 ' Fig. 2
To determine the reaction force between the slider and the ground let us separate the slider

from the ground and choose the generalized coordinates to be z, y and ¢ (Fig.2).
The matrix of inertia of the system released from the ground will be:

M 0 macy,
0 M —mas,, (3.1)
mac, —mas, mp® '

A ==

The inverse of the matrix A is:

p* — Ka®s2 —Ka?s,c,, —ac,
M(p? - Ka?) M(p%—~ Ka2) M(p?~ Ka?)
A-lo || _—KdPsece  — Kd?cl Kas, : (3.2)
M7~ Kat) MF-Kat) ME-—K&|
—ac, kas, 1
Mg —ka?) M~ Ka®}) M{p*— Ka?)

where the following symbols are used: Cp = COBIP; 8p = singb and M =my+m; K=m/M. In
general, the force F acting on the slider is a function of coordinates z and o, F = F(t,z, ).
The generalized forces of applied forces are of the form:

QT ={F Mg - mgas,]. _ (3-3)

For purpose of determining the reaction force generating by the ground acting on the slider
the freed system must realize the constraint:

y=0. (3.4)
To write the equations {2.20) and (2.23) let us calculate the following matrices
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The 9 x 9 matrix Gy is of the form:

Goy 0 Q0
Go=§ 0 Ggg 0O (3.5)
a 0 Gga

- where the 3 X 8 square matrices are written as follows:

0 0 “Zmas,
00 0 0o ¢ 1] %
Gy =0 O 0 , Goa=1]0 0 0 , Goz= 0 0 ——macy,
00 masp . 00 mac, . 1 1 2
—mas, —gmace 0
(3.6)
The matrices (2.16) and (2.17) are of the form now:
i § £ 000 00 0
4.=|0 0 0 2 ¢ ¢ 00 of, al=|z9ezgpzye]| (3.7)
000000 & § ¢
By following the formulae (2.15) we obtain the 1 x 3 matrix G:
T= “ mas, B> mac, ¢ 0” , (3.8)
According to the constraint equation (3.4} we write:‘
b=|010]|; byp=0. {3.9)
By the formulae (2.21} and {2.22) we obtain the 1 X 3 matrix B:
2 2
B=bAl= n —kalspc, . o” —Ka'e, e H (3.10)
, M(p? — Ka2?) M(p?2 — Ka?) M(p? — Ka?)
and the 1 x 1 matrix Bo:
of p - Ka.zcz} 2 1 FKa.232
Bo=B(Q+CG)+by = | e — mga?s} + macy (5" — Ka®)? + < 3T = Kag)“
The 2 x 3 matrix D in accordance with the constraint (3.4) is written as follows:
1 0 0
D= l 00 1 {3.11)
Equations of determining the reaction forces (2.20) and (2.23) will be now:
R.=0; R,=0; {3.12)
p% — Ka2e? 2 3 g(p —-Ka 2 1 FKa2s?
—-—-—————M(p az)Ry mga‘s;, + oy 5 4 macy (p* ~ Ka?)p? + = 2 M7~ Ka?o =
The reaction forces generated by the ground acting on the slider is equal then:
ma?s, FKa®s? mac, 2 2 2
Ry = g(p — Ka%c2 B ) + (02 — Ka2)  p2— Ka2cZ, (¢" - Ha®)p*, (3-13)
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By means of this expression it is possible to know deep the structure of the reaction force

CONCLUSION

The above presented method is an useful tool for calculating the reaction forces of kinematics
pairs. Especially, the finding of the structure of reaction forces allows to investigate qualitatively
many technical problems. _

This publication is completed with the financial support from the National Basic Research
Program in Natural Science.
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UNG DUNG NGUYEN LY PHU HQP DE XAC DINH
PHAN LUC KHGP DONG

Muc dich cda viéc khdo sdt 12 trinh biy nguyén Iy phd hop vi dng dung né &€ xdc dinh cic
phin lwc khép déng cda co cu. Véi muc dich dé, hé dwee gidi phéng khdi c4c lidn két da cho.
Digu nay 38 lam ting toa d3 cia hé. D& hé tw do c6 chuyén ddng gidng nhw hé di cho, cic toa d6
cla hé tw do phdi thda man mét s8 ring budc goi 13 cdc phwong trinh lién két. Céc phén iu'c Lén
két dwoc tao thanh tir cde lién két chinh 12 cdc phan hrc ma chung ta quan tim.
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