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GYROSCOP ON THE 
ACCELERATED ROTATIVE BASIS 

PHAM HUYEN- NGUYEN THANH MAU 
Hanoi Universz"ty of Civil Engz"neering ~ Hanoi National University 

In this paper, authors consider the balanced gyroscop on the accelerated rotative basis. Have 
been found interesting his nature. 

§1. THE MOTION EQUATION OF GYRO 

Suppose that: Gyro is balanced, he rotates at symmetric axis of rotor. There are only liquid 
bearing friction. The others supposition and system coordinate have been kept as [1]. 

Made hypothesis that: v1 = v2 = 0; v3 = w0t 0 ::; t ::; to. So: 

i2 = WotCOS x; q2 = Wotsin X, ~ = dsWO sin Xj 

<f> = sin 2y sin x( -do - C,) ~O + dsWo sin X 

System quasi (2.2) in [1] will be written 

dx dy 
dt = w,; dt = w2 

JLA(y) d~, + JL]d2w1w2 sin 2y + w0 tw2 cos x(d2 cos 2y- ds) 

c,( )2 . 2 ( )2sin2x( . 2 ) +Tw0t sm2xcos y+ w0 t -
2
-d0 sm y-d3 +d4 

tsin2y . (C -'~)] + + t . +wo -
2
-smx 1- uo Wzcosy w0 smxcosy- -nxw1 

~ { . ·~ JLdsdt + JL w1 [dowot cos x- d2 (w1 sm y + wot-
2
-) cosy] 

- dswot sin :z:} - w1 cos~y + wot cos x sin y = -nxw2 

System {1.1) will be studied by separation method of motion [2] 

§2. BUILD ASYMPTOTIC SOLUTION 

Consider (x, y) - small 
a) The solution in outside boundary layer 
At "O" order of smallness parameter p., we have 

dx(o) _ (o). 
-- -Wl I 

dt 

dy(O) (0) 
---w 

dt - 2 

- w~o) cos y(o) - w0t sin x(o) cos y(o) - nxw\0 ) = 0 

w\0 ) cos y(o) - wot sin y(o) cos .,(o) - nxw~o) = 0. 
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Initial condition for (2.1): 

Linearizing (2.1), receive 

dy(O) . dz(O) 
-- + Wotz(O) + nx-- = 0 

dt dt 
dy(O) 0 dz(O) 

-nx--- w0tyf l + -- = o 
dt dt 

Multiplying the second quasi on i-supposed and adding one with the first; result is: 

Solution have been represented in form: 

xfo) = xoe-Wonxt2 cosWot2 

y(o) = xoe-Wonxt2 sinWot2· 

At the first order of small parameter JJ receive following system 

Initial condition 
xf'l(t) [,=O = y(ll(t) [,=O = 0 

Solution of (2.3) easy describe by form: 

.,( 1) (t) = .-wonxt' [d~~· t 3 cos wot2 + M, cos Wot2 + M2 sin wot2 + Mol 

(1)( ) -w n •' [doxowot . - 2 - 2 . - 2 l y t = e 0 x 
8 

sm wot + N, cos w0 t + N2 sm wot + No 

where Mi, Ni ·constants only dependent on ai, di, x0 , nx, W0 . 

b) The asymptotic solution at inside boundary layer 
At the "zero" order of 11- we have: 

Initial condition 

So: z(0 l(r) = yf0 l(r) =: 0 

dx(o) 
--=0· 

dr ' 

dy(O) 
·--=0; 

dr 
t 

r=-. 
p. 

xf0 l(r)[ =yf0 l(r)[ =0 
1'=0 r=D 
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The "first" order of p., receive system of quasi: 

dz( 1) (o) dy(ll (o) ( ( ) 
---;J;- = w1 ; ---;J;- = w2 ; x l}(rJI,=o = y 1 (rJI,=o = 0 

d (0) 
(a2 +a,+ ao)~ + nxwl0 ) +w~o) = 0 

dr 
dw(O) 

- w\0
) + (ao + b,) d~ + nxwJ

0
l = () 

System (2.5) has quasi of feature: 

l
(az+a,+

1
ao}.A+nx 1 I 

(a,j + b,).A + nx = 
0 

Solution of (2.6) have been represented by form: 

where 

.A,/2 = -Ko + iK, 

K _ nx(az +a,+ 2ao + b,) . 
0 

- 2(a2 + a 1 + ao)(ao + b,) ' 
K, = v'nx2a~- 4(ao + b,)(a2 +a,+ a0 ) 

2(a2 +a,+ ao)(ao + b,) 

Accordingly, solution wJ 0 l (r) of system (2.5) is being expressed by formula: 

(2.5} 

(2.6) 

wj0l = (C1 cosK,r+C2sinK,r)e-Ko< (2.7) 

wJ0l = [ C, (so cos K, r + s, sinK, r) + C2(s2 cos K, r + s3 sinK, r)] e-Ko< 

Si - const: 
w(o)(rJI =w(O)(tau.JI =0 

1 r=O 2 r=O 

From this condition, receive: 
w(0l(r) = w~0)(r) = 0 

But follow the first quasi of system (2.5); we have 

Then, in boundary layer, receive: 

x(0 l( r) = x(') (r) = 0 

y(o)(r) = y('l(r) = 0 

In the end, from (2.2), (2.4); (2.8), we have 

x(t,tL) = xoe-wonxt' cosw0 t2 + IL"('l(t) 

y(t,tL) = xoe"'•nxt' sinwot2 + ILY(')(t) 
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CONCLUSION 

+The result (2.9) shows that: Gyro has cross-bedding. This cross-bedding includes in element 
order p.. 

+ Cross-bedding dependent on direction of rotation of basis. 
+ The formula (2.8) represent that the motion happens very quickly so that, the motion in 

boundary layer beforche had time to expanse. 
+ In general case 

2( ) 2(t ) 2 -2w0nxt' + :z: t, p. + y , f.J = x 0 e J.t ••• 

So if Wo < 0 then 
x2 + y2

"" xz(l- 2wonxt2
) 

Because t • small => t 2 • very smallness. 
H wo > 0 t - big then: 

H wo < 0, t - big then: 
x2 + y2 = x5e2!Wolnxt2 + f-L 

It mean must be attentively to the direction of rotative of basis. 
This work is completed with financial support from the National Basic research program in 

Natural Science (KT-04) 
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GYRoscoP TREN DE QUAY c6 GIA Toe 

T<l.c gill. srl- d~ng phu-ang trlnh chuy~n d9ng cda gyroscop can b~ng trong gia. ca.c dang, de' 
quay c6 gia tile. Nghi~m etta h~ phmmg trinh vi phan chuygn d9ng duvc tim blng phuO'ng phap 
tich chuy~n d9ng. Ke't qui cho thay & g'a.n dting b~c "1" theo J..t xuit hi~n m9t tie'n d9ng nh6. N6i 
chung, chuygn d(Jng cU. a gyroscop phv- thu{k m<].nh vio chi'eu quay eli a de". 

\o, I' A I' ' V 

VE PHUONG PHAP NGHIEN CUU KHA NANG 
( tigp theo trang 7) 

SUMMARY 

METHODS FOR STABILITY AND INSTABILITY OF THE SOLUTION 
OF ONE NON-LINEAR DIFFERENTIAL EQUATION 

When research on instability states of tall and flexible structures is carried out, the solutions 
of non-linear differential equations have to be investigated. Althrough the fully analytical solutions 
of the moving rule of the structures cannot be found, but based on the conditions applied to the 
parameters of the moving differential equations the authors have studied the characteristics of the 
solutions when t -+ oo. Then the instability of the structures may be investigated, and the stability 
conditions can be concluded. This is the content which this paper would like to present. 
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