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GYROSCOP ON THE -
. ACCELERATED.ROTATIVE BASIS

PHAM HUYEN - NGUYEN THANH MAU
Hanoi University of Civil Engineering - Hanot National University

In this paper, authors consider the balanced gyroscop on the accelerated rotative basis. Have
been found interesting his nature. '

§1. THE MOTION EQUATION OF GYRO

Suppose that: Gyro is balanced, he rotates at symmetric axis of rotor. There are only liguid
bearing friction. The others supposition and system coordirate have been kept as [1].
Made hypothesis that: v; =vs =0; vg =wet 0t <y, Sor

o =wgtcos x; §g = wolsinz, a,'b' = dawg sin z;
. . w .
@ = sin 2y sin z(—dy - Cl)—ZP- + dawg sin

System quasi (2.2} in |1] will be written

dz_w_ ég_
7t

d: .
,uA(y)%tl— + pldow;wg sin 2y + wotwy cos z{dg cos 2y — dj)

c ] in 2z ) .
+ -5-1—(w(,t)2 sin 2z cos® y + (wot)28 nz (dosin® y — ds + d3)
sin2y . .
+ wyt sin {0} — do)] + wz cosy + wot sin x cos y — —nxw, (1.1)
d . in 2
,ud;;% +;.¢{w1[d.'gw0tcos:r— dg(wlsmy+w0ts y)cos y
- dgwgt sin :I:} — wy cosy + wot COS TSN Y = —nxws

System (1.1) will be studied by separation method of motion [2]

§2. BUILD ASYMPTOTIC SOLUTION

Consider (z,y) - small
a) The solution in outside boundary layer
At “0” order of smallness parameter u, we have

dx(0) (0) dy{ﬂ) ()
a1 Ta Yz
- w(zo) cos y{®) — wot sin z(® cos y(®} — n_.xwgo) =0 _ (2.1)

wgo) cos y(u) — wyisin y(") cos 20— nxw(gd) = 0.
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Initial condition for (2.1):
z(0) (t) I::o = Toj yw)(t) ‘t:ﬂ =0

Linearizing (2.1}, receive

dyl® (0) dzl® B

i + wols'™ + ny ke
{0) (0)

—ax B —ugty® + 2

Multiplying the second quasi on s-supposed and adding one with the first; result is:
2L 20) _ o (0) (0) _ 4,(0)
(nx—l—z)EE(z — i)+ wet{z!V — gV} =0

Solution have been represented in form:

o~ 2 ~
:27(0] = :Eoe_'(mm'xt cos WQtz ‘
-0 I - W 2.2
y(ﬂ) = Zae WO gin 5ut? Gy = —— = (2.2)
1+ “'2)(2

At the first order of small parameter u receive following system

dy(1) dz{1) d2(0)
g oot = —(az + oy ao) g — (da — ds)uot |
~ (wot)*(=1*) (ds - d3) + C1] (2-3)
dz{1 dy(1) 9 d2y(©) dz(1) o :
i + nX +woty!V = ~(ag + l'2‘1)-'&,—1:2"—‘ — dowot ~ dawotz®)
Initial condition
z(l)(t”t___o = y“)(t) [t=0 =0
Solution of (2.3) easy describe by form:
(1) ~Gonyxt? deZo 3 - 42 - 2 <~ L7 :
() =e [—12—t cos Wgt® + M, cos Wot® + Mz sin @t + Mo]

2.4)
5 dozoliot , . - . (
y“)(t] =g donxt? [—Oﬂ;—c-ui sindgt? + Ny cos@ot? + Nosin Hot? + ND]

* where M;, N; - constants only dependent on ay, d;, 2o, nx, &o-
b) The asymptotic solution at inside boundary layer
At the “zero” order of 4 we have:

dz(® dylo)
dr 0 g =0

Initial condition :
2O (r)] o =9N1)|, o =0

So: z(®(r) =yO(r) =0
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The “first” order of u, receive system of quasi:

d.’ﬂ(l) _ (0). dy(l} =wg0).

dr “ii dr ! z(ll(f)|r=0 = y(l)(r)‘f=0 =

(o) -

(2 + a1 + ag) dd,' + nxw(o) +w(0} =0 S (2.5)
) O '
( + (ao + b1) + nxw, '
System {2.5) has quasi of feature:
(az + a1 + ao)A + ny 1 - ' (2.6)
1 (G-O + b]_)). + ny '

Solution of (2.6) have been represented by form:
Ay = —Ko +1K,

where

ny{az + a1+ 2a0+ b1} Ky = \/nx2aZ — 4{ao + b1)(az + a1 + ag)
2(az + ay +ao)(ao +b1) ’ ! 2{aa + a1 + ao){ag + b1)

K0=

Accordingly, solution ws.o) {r) of system (2.5) is being expressed by formula:

{0) = (Crcos Ki7 + Czsin Ky r)e” Kot (2.7)
wg ) = [01 (socos Kyt + sy sin K1) + Ca(sz cos K17 4+ 33 sin Klf)]e'K“

g; - const: ©
0); -
w;. )(T) |r o = w2 (m”)lf—o

From this condition, receive:
(0)(7') = w(O)(r) =0

~ But follow the first quasi of system (2.5); we have

) = [m&oldr = {; y(ll = fwéo)dr =40.

Then, in boundary layer, receive:

2O(r) =z (r) =0

(2.)
() =y r) =0
In the end, from (2.2), (2.4); (2.8), we have
x(t, p.) = zog—ﬁonxtz cos a0t2 + #-’B(l)(t) . (2 9)
y(t, 1) = zye?o"X gin Got? +py () .9)
- Wo
<t<t
“T1F n2y2 '’ == 0



CONCLUSION

+ The result (2.9) shows that: Gyro has cross-bedding. This cross-bedding includes in element
order p.

+ Cross-bedding dependent on direction of rotation of basis.

+ The formula {2.8) represent that the motion happens very quickly so that, the motion in
boundary layer beforche had time to expanse. '

+ In general case ‘
z2(t, 1) + ¥2(t, p) = @§e 20 g

So if &g < O then
22 + y? m 22(1 — 2Bonyt?)

Because ¢ - small => 2 - very smallness.
If &y >0 ¢ - big then:
2 +y* =0

If &9 < 0, t- big then:
- 2
22 + y2 = zge2]w0|nxt +u

It mean must be attentively to the direction of rotative of basis.
This work s completed with financial suppert from the National Basic research program in
Natural Science (KT-04}
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GYROSCOP TREN B QUAY €O GIA T6C

Téc gik st dung phuwong trinh chuydn ddng cda gyroscop cin bing trong gii cic ding, d&

quay ¢é gia t8c. Nghiém cida h§ phwong trinh vi phin chuyén déng dwee tim bing phwong phip

“tach chuyén d8ng. K&t qui cho thiy & gin ddng bic “1” theo y xuit hién mdt ti€n ddng nhé. Néi
chung, chuyén ddng cia gyroscop phu thudc manh vio chitu quay cta d€.

VE PHUONG PHAP NGHIEN CUTU KHA NANG ...
(tiép theo trang 7)

SUMMARY

METHODS FOR STABILITY AND INSTABILITY OF THE SOLUTION
OF ONE NON-LINEAR DIFFERENTIAL EQUATION

When research on instability states of tall and flexible structures is carried out, the solutions
of non-linear differential equations have to be investigated. Althrough the fully analytical solutions
of the moving rule of the structures cannot be found, but based on the conditions applied to the
parameters of the moving differential equations the authors have studied the characteristics of the
solutions when ¢ - co. Then the instability of the structures may be investigated, and the stability
conditions can be concluded. This is the content which this paper would like to present.
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