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DYNAMIC ABSORBER FOR THE PARAMETRIC OSCILLATION 
OF THE RECTANGULAR THIN PLAT OF CREEP 

ON ELASTIC FOUNDATION 
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Technical Univei's£ty of M£n1'ng and Geology, Hanoi SRV 

§0. INTRODUCTION 

The effect of dynamic absorber for the oscillation of the mechanical systems with distributed 
parameters (beam and string) has been investigated (see for example [2, 3]). 

However, the effect of dynamic absorber for the parametric oscillation of the rectangular thin 
plate of creep on the elastic foundation, to the author's knowledge, has not been hitheto examined. 

This problem will be studied here by means of an asymptotic method for high-order systems 
[1] and boundary value problem [4[. 

§1. FORMULATION OF THE PROBLEM THE EQUATION OF MOTION 

Now, let's consider the parametric oscillation of a. rectangular thin plate of creep, having 
thickness h, Young's modulus E, specific mass p and lengths of edges b, c, which is supported on 
four edges and lying on the elastic foundation with one coefficient. 

Its motion is loaded by longitudinal force, equally distributed q = q(t). To decrease or to 
damps this oscillation, we use the weak dynamic absorber as shown in Fig. 1. 
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The mechanical properties of material, when being strained, has been described by the model 
of the standard linear body [5]. The state equation in operator is written of the following form 

a=Ee, (1.1) 

( E1) a E1+K2 1+- -
E= E2 at 

( Ko) a 1+-- -
E2 at 

(1.2) 
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The motion equation in classical form of considered system will be 

a2
W { D\74W + KW + at2 M = e [U- W(d,i, t))K1o(x- d)o(y- i) 

[
dU a J a2

W } +;, dt- atW(d,i,t) o(x-d)S(y-t)-hq ax2 +!. {1.3) 

where 5 - function of Dirac, ~- a s~all parameter, K- coefficient of the elastic foundation, D -
the bending hardness 

M=ph {1.4) 

Superseding the elastic modulus E by the analogous operator {1.2) into the expression D of 
the equation {1.3), we get the equational system oUhe problem . 

here 

a3 W a2 W D a 
at" + ~ at2 + ~at ('V4

W + KW) + ~(D1 v•w + KW) = 

~ { . [du a J =eM K,[U- W(d, i, t))S(x- d)S(y- i) +), dt- at W(d, i, t) S(x- d)S(y- i) 

a2
W } e a { - hq axz + f + Mat K,[U- W(d, l, t))S(x- d)o(y- i) 

[
dU a · J . a2 W E2 4 } +A - - -W(d i t) o(x- d)S(y- i)- hq- + f + D1 -'V W 
dt at ' ' 8x2 E 1 ' 

d
2
U [dU a J m-d" +K,[U-W(d,i,t))=-A -d --W(d,i,t), t- t at 

W = W(x, y, t)- deflection of the plate, 11- Poisson's ratio, 

( 
a• a• a• ) 

\7 4 = a 4 + 2 28 2 +-a 4 - Laplace's operator, 
· X 8X y y 

! = ! ( w, 8
8
: , ... ) - nonlinear function, 

E1h3 
E2 

D, = 12{1- v2 ) ' ( = K 2 · 

The relevant homogeneous boundary conditions are as follow · 

WI =0 y=O, c 1 

a2W a
2
WI --+v-- =0 

Bx2 By2 x=O, b I 

a
2
W a

2
WI -- +v-- -0 

8y2 8x2 y:o, c- ' 

{1.5) 

{1.6) 

{1. 7) 

{1.8) 

For simplicity, it is supposed that M = 1 and we put .Of = Dl , w2 = Kl , then the equational 
M m 

system {1.5), {1.6) is possibly written in the following form 

a3 w azw a ( 2 • 2 • ( dU aw ) 
at3 + ~ at2 + at 0 \7 W + KW) + ~{0 \7 W + KW) = eF U, dt , W, at , ... , 

d
2

U + w 2 [U- W(d l t)) = -~ [dU- _i!_W(d i tJ] 
dt2 . l J m dt at ' ' ' 
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with the boundary conditions 

w[ =O :c=O, b 1 

(1.11) 

w[ =o y=O, c 1 

§2. CONSTRUCTION OF THE ASYMPTOTIC SOLUTION 

The solution of the equation (1.9) with the boundary conditions (1.11) can be found in the 
fonn 

= 
W(x,y,t) = L S,.,.,(t)Z,.,(x,y), Z,.,.,(x,y) =sin n:x sin m:y · (2.1) 

n,,,= l 

Substituting (2.1) into the equation (1.9) and then applying Galerkin-Bubnov's method, we 
obtain the following equations for unknown functions Bmr~ ( t), U ( t) 

(2.2) 

d2U 2 [ = l A [dU · dt2 + w u- 2: s,.,(t)Z,.,(d, t) = -;;:; Tt- 2: s,.,.,(t)Z,.,.,(d, tl], 
n,u~=l 

(2.3) 

where 
2 2 [(m')2 (m")2] 2 

fl,u,~ = n T + -c- + K. (2.4) 

I . d h h . f f . I 'II . z ( ) . 27rx . mtry t 15 suppose t at t ere ex1sts a orm o part1cu ar osc1 at10n rHn x, y = sm.- sm --
b c 

and it is the most important when n = m = 1. Then equational syste-m (2.2), (2.3) has the form 

d
2
U 2 [ . J A [dU . J dt2 + w U - S,., ( t) X,., ( d, e) = - m dt - S,.,., ( t) Z,., ( d, e) , 

F( t) = • !! { K 1(U - S,., ( t)Z,., ( d, e) JZ,."' ( d, e) + A [ ~~ - S,., ( t) Z,., ( d, e)] Z,.,,. ( d, e) 

+ h!c(n:) 2
S,."'(t)q(t) + j J [Z,."'(x,y)dxdy} 

0 0 

(2.5) 

(2.6) 

4 a { [du · ] + • be at K.[U - s,., ( t )Z,., ( d, e) 1 z,."' ( d, e) + A Tt - s,."' ( t) z,.,. ( d, e) z .. "' { d, e) 

hbc(ntr 2 ··j"j' } . + 4 b) S,.~,.(t)q(t) + [Z,."'(x,y)dxdy - oH,.,S,.,.(t). (2.7) 
0 0 

here 
H = E2 02 [(n")2 (m")2]2 

IHU El b + c . 

Now, we shall study the case, when 

q = qo sin1t, qu = const, f = -fiW3
, fi > 0. (2.8) 
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Function F (2.7) is of the form 

4E { . [dU · ] F(t) = ·~ K 1[U- S,..,.(t)Z,..,.(d,l)]Z,..,.(d,l) +A dt- S,..,.(t)Z..,,.(d,l) Z,..,.(d,l) 

hbc(n")2 . 9bc 3 } + 4 T Snm(t)qosm"rt- 64ps,.,,.(t) 

4 a { [du · · ] +•beat Kt[U-S..,,.(t)Z,.,..(d,l)]Z,. ... (d,l) +A dt -S,..,(t)Z,..,{d,l) Z,..,.(d,l) 

(2.9) 

It is supposed that there is a resonance relation 

(2.10) 

~ is the detuning coefficient. 
With these assumptions, we are going to find the partial solution of the equational system 

(2.5). (2.6) in the following form {2] 

S,..,.(t) = acosp, <p = G1t+ .P), 
U= a(Lcos<p+Nsin<p), 

where L, N - constant and the quantities a, 1/J a.re determined from the equations 

here 

da ) 2 ) dt = eA,( a, ,P + e A2 (a, ,P + ... , 

~; = ( fl,..,.- i) + eB,(a, ,P) + e2 B 2 (a, .p) + ... 

By substituting (2.11), (2.12) into equation (2.6) we obtain after simple manipulation 

The quantities A1o B1 are determined from the following expressions [3] 

A,= (fl,.,,.G + €H) 
2flrHn·(n~,m +e) l 

1 /2• . 
G =; Fcos<pd<p, 

0 

Mter series of simple calculations we get 

2• 

H =; / Fsin <pd<p 
0 

1 da [ ] 2 dt = - K,R + Afl,..,.S + Efl,. ... P + Q0 cos 'P a, 

ai~; = [(o~,..- :
2

) +K,S-J.fl,..,.R+fl~,..P+Q0 sin2l/>+Ta2]a. 
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(2.11) 

(2.12) 

(2.13) 

(2.14) 

{2.15) 

(2.16) 

(2.17) 



where 
2N 2 

R = bcZ,..,.(d,i)e, S =be [z,.,,.(d,i)- L]Z,.,,.(d,i)<, 

E2n2[(m')2 + (m")2r qon2"2 T-- f327. 
p- b c Qo = -462 , 

- 2E1 (!1~,,. + ~2) 128 

(2.18) 

Vanishing the right part of the equational system (2.17) we obtain the stationary solution ao, 
.Po related to the frequency 1 and amplitude q0 of the force q 

here 

R• R 
==~, 

"m 
Q•- Qo 

· - n2 1 

~linrn 

The relation (2.19) is plotted in Fig. 3 for the case 

(2.19) 

fl~m = 1; K 1 = 0 . .1; R' = 0.1; s• = 0.1; Q'2 = 0.04; P' = 0.2; A= 0.1; € = 0.65 and { = 0.7 

0,63 

3 4 5 

Fig.3 
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It is easy to see that when ~ = 1, A = 0.2 the parametric oscillation is damped and when the 
parameters of the examined system are chosen so that 

§3. THE STABILITY OF STATIONARY OSCILLATION 
--'~ To->;t"Udf 'th~~--~t-~biiity of stationary oscillations, we have tO set into the equational system 
(2.17) for a = ao + 5a, ,P = ,Po+ 6,P, where 6 a, 5,P are small perturbations. Neglecting the small 
quantitieS. --(jf liiihe:f ofder, we receive the following variational equations for a0 _=j:. 0 

1 d6a . 2 dt =2Qoaosm2,Po6,P, 

a1 do,P 2 T dt = 2Ta0 6a + 2aoQo cos 2,P05,P. 
(3.1) 
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Fora0 =0 

7 doa [ ] - - =- K1R + AflnmS + en,m~P + Qo cos21/Jo 5a, 
2 . dt . 

7 do¢ _ l. ( 2 7
2

) K 2 . ·'· J _ az dt - nnm- 4 + 18 :- AOnmR + flnmp + Qo Slll 2'f'o - 0. 

(3.2) 

Using the Routh-HurWitz's criteria, we get the stability condition of stationary_ solution ao =/= 0 
in the form 

2 

A~- >.O,.,..R* + K,S* + (1 + P) > : · (3.3) 

In Fig. 3, the solid curves correspond to states of oscillation, where the stability condition (3.3) 
is being valid. In the case ao = a; from (3.2) we are 

where 

d5a = >.dt 
oa 

(3.4) 

The stability condition of a stationary solution for ao = Owill be thus given >. < 0. 

It is easy to show that, if Q* ~ 0~0 
= (CR* + (>.S" + €P*)O,..,,]. The stationary solution 

nrn 
(a0 = 0) are always stable, doing not count the limitary value of 11" 

ry•2 
"4 = [(1 + P) + cs•- >.R*O,.,,.]. (3.6) 

If Q" > _2,_ , they are always stable, too with all value of 11*. 
flrur~ 

When Q* < flQo , it is meaned that the acting forces are large, the stationary solutions 
· tHf£ 

(ao = 0) will be stable with the values 

where 

§4. CONCLUSION 

1. The equation of motion a rectangular thin plate of creep on an elastic foundation, combined 
a dynamic absorber was set up. Its solution has been found by mea.ns of an asymptotic method, 
further the stability conditions of the stationary solution have been investigated. 

2. The effect of a weak dynamic absorber has been considered. It is possible to choose the 
parameters of the examined system for the stationary oscillation to be damped. 

3. It is easy to see that the effect of the absol'ber will be high, if Z,..,.(d,i) = i, according to 
b c . b c 

d = -
2 

, R. = - m particular case n = 1, m = 1 we have d = - , £. = -
n 2m 2 2 
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