Tap chi Co hoc  Journal of Mechanics, NCNST of Vietnam T. XVIII, 1996, No 2 (7 ~ 12}

DYNAMIC ABSORBER FOR THE PARAMETRIC OSCILLATION
OF THE RECTANGULAR THIN PLAT OF CREEP
ON ELASTIC FOUNDATION
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Technical Unwersity of Mining and Geology, Hanot SRV

§0. INTRODUCTION

The effect of dynamic absorber for the oscillation of the mechanical systemns with distributed

parameters {(beam and string) has been investigated (see for example {2, 3|).
However, the effect of dynamic absorber for the parametric oscillation of the rectangular thin
plate of creep on the elastic foundation, to the author’s knowledge, has not been hitheto examined.
This problem will be studied here by means of an asymptotic method for high-order systems

{1] and boundary value problem [4].

- §1. FORMULATION OF THE PROBLEM THE EQUATION OF MOTION

Now, let’s consider the parametric oscillation of a rectangular thin plate of creep, having
thickness ~, Young's modulus E, specific mass p and lengths of edges b, ¢, which is supported on
four edges and lying on the elastic foundation with one coefficient.

Its motion is loaded by longitudinal force, equally distributed g = g(t). To decrease or to
damps this oscillation, we use the weak dynamic absorber as shown in Fig. 1.
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The mechanical properties of material, when being strained, has been described by the model
of the standard linear body [5] The state equation in operator is written of the following form

o= FEe, (1.1}
E=E1+K2(1+%)%. 1)
B
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The motion equation in classical form of considered system will be -

W
DVW + KW + Ba 2

D - 2w en]sa -~ by~ w5} (1)

= e{[U — W (d, £, )] K8 (z — d)é{y — £)

2

dt dx?

where & - function of Dirac, £ - a small parameter K - coefficient of the elastic foundation, D -

the bending hardness

ER®
= e 1 = 1.4
D=y M=k (1.4)

Superseding the elastic modulus E by the analogous operator (1.2} into the expression D of
the equation (1.3), we get the equational system of the problem

W B2W D38

Freas é Freaayd at(v4w+ KW) + ¢(D\V*W + KW) =
= e-f?{KI{U ~W(d, £,1)]6(z = d)(y — &) + A [%E - %W(d, £, t)]é(w —d)i(y -4
hg‘; - r}+ %g—-{fflw —W(d,,8)|6(z - d)5(y - &)
#A[Z - Swia, g )]se - d)sty - g~ hq% Lt f D E’*’ viw), (L5)
mE + KalU - W(d, )] = —A[%g - —W(d £,4), (1.6)

here

W = W (z,y,t) - deflection of the plate, v - Poisson’s ratio,
a4 g4 4
V= ( 9

ey + ZW + B—yz) - Laplace’s operator,

oW
f= f(W -, ) - nonlinear function,
_ E]_h.a EZ .
-D!. - 12(1_ U2) ,7 E K2 ’ o . (1‘7)

The relevant homogeneous boundary conditions are as follow -

: 2 2
Wl oo WL W
z=0, b Oz 9y lz=n, b (1.8)
Wi = W W e '
=1, ¢ ¥ 3y2 332 y=0, ¢ -
.- - “ . - . 2 Dl - KI .
For simplicity, it is supposed that M = 1 and we put {17 = Y ST then the equational
: m
system (1.5}, (1.6) is possibly written in the following form
oW W 8, v 8w
—_— v g = —_ ... .
5 gt 5 (VW £ KW) - €(0FVW + KW) EF( oW ) (1.9)
LU, ArdU 8
SR DA ] et)]_—;[?ﬁ— SW(d21), (1.10)
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with the boundary conditions

2 2
wl_ =0 2.2 W ~o,
w=0, b dz2 3y? lg=0, b (1.11)
W =0 oW + Wekiid =0 -
y=0, ¢ O} ayz, -7 822 dy=0, ¢ -

i2. CONSTRUCTION OF THE ASYMPTOTIC SOLUTION

The solution of the equation (1.9) with the boundary conditions (1.11) can be found in the

form .
nre mn

Wiswd= 3 Sun(B)Zum (2,9, Zunl® ) =sin 7% 5in Y (2.1)

=1

Substituting {2.1) into the equation (1.9) and then applying Galerkin-Bubnov’s method, we
obtain the following equations for unknown functions S,i,,,(;], U ()

S"'l'"’t (t) + é'éfl'll(t) + Q?ﬁ,f'[ "1111’1’: (t) + Eﬂﬂ.’rlv TLIrL (t) = SF(t), (2.2)
d? U, dU . '
dt2 [U - ﬂ_;:l Snm(t nm(d ﬂ)] [ dt 7 - z ‘S:Lm (t)Zum(d, E)] ) (23]
where
02, =02 [(n—;r-)2 + (r-nc—ﬂ)g] +K. (249

. . . L. . 27z .- m
It is supposed that there exists a form of particular oscillation Z,,,,{z,y) = sin.—=sin Y

¢
and it is the most important when n = m = 1. Then equational system (2.2), (2.3) has the form

.S.ﬂ.m. (t) + gs;nm.( ) + n;m_ .um(t) + EQ?L’fQS1L7fL (t) = EF(t), (25)
£V A[dU o, T '
dtz . [U Srl.m.(t)Xn.rn(d 8)} = - [_C-&_ = Snru(t)zrun.(d) Z)], (26)
4 d . .
F(t) = 3 E{KI{U S ) Zo 0] Zo (40 N[ = Sun8)Zun (4,0] B (0,
b ¢
hb
+ = (55) B tthal) + [ f (3, y)dzdly}
T ‘
4 d auv .
{Kllv S (8) B (s ) Zn () + X[ S = S () Zu (4, 8)] Zoar(d, 0
b at di k
hbe ,nw
( ) Snm(t t) +f/fzmu(1,y)d$dy} EHuermn() (2-7)
. 0 _
-here E .
= Z2ae (PN (T2
o= 0 (7Y + ()T
Now, we shall study the case, when
g=gusinqt, gqu=const, f=-—AW> B>0. ; - {2.8)
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Function F (2.7) is of the form

dU

= = Sun(8) Zurn (4,8)] Zuun (4,

F(©) = e { KU ~ S (6 (4, 0]Zan (6,6 + A 5

hb

+ 7 (F) Sum(@osin gt ~ —-ﬁs::m(t)}
4 v

+ 6;‘ 5; {Kl [U Sum (t) um(d E)]'an (d 2) + /\ [ ""!- (t) Zmﬂ{d f)] refre (d E)

hbe .

T (Eg')zsnrrs(;) gosmnyt — n-m (t)} —eHpn Sﬂm (t} ] (2-9)

It is supposed that there is a resonance relation
!
Qi = 57 + A, {2.10)

A is the detuning coefficient. :
With these assumptions, we are going to find the partial solution of the equational system -
" (2.5), (2.6) in the following form (2]

Spm(t) = acosp, o= (%‘rt + jb), | (2.13)
U=a(l cos @ + N sin v), (2.12)

where L, V - constant and the quantities a, ¢ are determined from the equations

d
= = cA;(a, ) +e%4z(a, ¥) +
2.13
% = (O = 1) +eBafa,p) +Bala ) + o
dt nm 2 £ola, £ 214,
By substituting (2.11), (2.12) into equa.tlon (2.8) we obtain a.fter simple manipulation
2,2 2 A2 e : ‘ 3
{U (w - nmn.) + _—g'ﬂnm.] nnruzﬂﬂt(d e)
L= ;’; Z,,,,,,.(d,f), N =-: A . {2_14}.
[w? - 02,02 + 5502, [ws - 02,07+ 2502,
The quantities A, B) are determined from the following expressions [3]
_ ,(num.G + EH) _ (60 - nnm.H) ’
A= (B + ) P T TR, ) (2.15)
here
1 21\' 1r7
= ;[Fcosgodgo, H= /Fsin pdp (2-18) -
1] 4] '
After series of simple calculations we get
; )
;'&% = - [K].R + Aﬂrm’us. -+ Ennm.P + QO cos ‘P] a,
(2.17)
128 _ (92 ~ ——) + K\ S = MR+ 02, P +Q sin21l)+Td2]a
9 dt I 4 ‘ T nm 4] .
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where

R= %zﬂm(d, de, S= :—c[z,,m(d, £) =~ L) Zoun (d )¢
2[(nmya  maya)? (2.18)
_BoIE O] et e

2El(n,m+§2) ’ 4b2 ' T 128

. Vanishing the right part of the equational system (2. 17) we obtain the stationary solutlon ag,

" “yho related to the frequency + and amplitude: gy of the force q -

2 2
'_74_ = (1+P)+ K15 — Apu R* + A3 £ \/Q*2 - [KlR*(AS* + gP*)-’%] . (2.19)
here
2 ’ ' 2
7 ™ 8 * _ R * QD e P 2 TGO
’?2 nfz’iﬂ'l ) S nlzl.ﬂ'l- ' B nﬁm ' Q ﬂ?l.m ' P - n?ﬂ'ﬂ ' Ao - ﬂ!zlm -

The relation (2.19) is plotted in Fig.3 for the case
%, =1; K; =0.1; B° =0.5; §* = 0.1; Q'3 = 0.04 P*= 0.2 A=0.1; { =065 and { = 0.7
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Fig. 8
It is easy to see that when =1, A = 0.2 the pa.rametnc oscillation is damped and when the
pa.rameters of the examined system are chosen so that

Q*—-K\R*

AT P < {(1+ P) + K.S* = 20 B*], in is se-If disappeared.

3. THE STABILITY OF STATIONARY OSCILLATION

e stu&;it the stz;billty of stationary osc111a.t10ns, we have to set into the equa.tmﬁa.l system
{2. 17) for a = ag + ba, ¥ = 1,[)0 + 84, where §a, 64 are small perturbations. Neglecting the small
quantities of higher order, we receive the followmg ‘variational equa.t;mns for ag ?ﬁ 0

~+ d§
5 d—: =-2Qgap sin 2pd 1,
_ (3.1)
ay déyp 2 S
5 = 2Tayda + 2apQg cos 21»[’061'[" -
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For ag =0

1 Eﬁt_ = —[K1R + A2 + EQun P + Qo cos 290 b,
(3.2)
¥ déY _ Tfo _
T [(nmu - ) + K8 = MR+ 02 P+ Qusin 2%] 0.

Using the Routh-HurWitz’s criteria, we get the siability condition of sﬁatmnary solutmn ag # O
in the form .

A2~ AQuu B+ KiS* + (1+ P) > UZ : (3.3)

In Fig. 3, the solid curves correspond to states of oscillation, where the stability condition (3.3)
is being valid. In the case ap = 0, from (3.2) we are

dfa
"EE“ Adt _ (3.4)

where

{OR + (AS + £P) \/ B-[-1+(+ P, 05 - ,\an] ? } 6

The stability condition of a sta.tmna.ry solution for ag = 0'will be thus given A < 0.

It is easy to show that, if @* = hz—o = [C’R" + (AS* + EP*)Q,,,,,,,]. The stationary solution

(ao = 0) are always stable, doing not count the limitary value of n*

*2 .
"4 = [(L+ P) + OS* = AR* Q. (3.6)
Q> QQO , they are always stable, too with all value of #”.

When Q* < e , 1t is meaned that the acting forces are large, the stationa.fy solutions

(26 =0) will be st.a,l::iglwith the values

2 2 2
1’_ < p—l- or ’T_ > _2_
4 4 4 4
where "
ﬂ‘:g == (1 +P) + OS* - )\R* um ¥ Q*2 [CR* + (AS* + g'P)n""‘]z

§4. CONCLUSION

1. The equation of motion 2 rectangular thin plate of creep on an elastic foundation, combined -

a dynamic absorber was set up. Its solution has been found by means of an asymptotlc method,
further the stability conditions of the stationary solution have been investigated.

2. The effect of a weak dynamic absorber has been considered. It is possible to choose the
parameters of the examined system for the stationary oscillation to be damped. '
3. It is easy to see that the effect of the absorber will be high, if Zuru(da £} = ¢, according to

b

d=2 E-—Ec——mpa,rtlculurca.sen—l m=1we haved = - E——
m
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