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PROBABILISTIC CRITERION FOR 
GAUSIAN EQUIVALENT LINEARIZATION 

N. D. ANH, W. SCHIEHLEN 
lnstitu.te of Mechanics, University of Stu.ttgart 

ABSTRACT. Within the scope of Gaussian equivalent linea.riza.tion, a. new probabilistic cri

terion for determining the coefficients of the linearized equivalent equation is- proposed to treat 

stationary ~esponse of nof!--linear systems under zero mean Gaussian ro.nd.om excitation.· Application 

to the Duffing oscill::LI;or subjected to white noise is presented that shows significant improvement 

over corresponding accuracy of the classical Gaussian equivalent linearization for both weak and 

strong no.n-linearities.-

1. INTRODUCTION 

In recent years, there has been an ex·tensive investigation into the response of non-linear 
stochastic systems due to fact that many excitation~ of engineering inte;rest are basically random 
in nature. Since' all real engineering systems are, more or less, non~ linear and 'for those systems the 
exact solutions are ·known only for a. number of special cases, it is necessary to develop approximate 
techniques to determine the_ response statistics of non~ linear systems under random excitation. 
One of th-e known approximate techniques is the Gaussian equivalent linearization whiCh was first 
proposed by Caughey [3] and has been developed by. many authors, see e.g. [2, 4, 7, ~; 10, 11, 13]. 
The well known classical version of the Gaussian equivalent linearization consists of replacing a. 
given non-linear equation by a linear one· for which the coefficients of linearization are found from 
a mean square error criterion and then evaluated by an assumption about the Gaussianity of the 
original non~ linear equation response. It has been shown that the Gaussian equivalent linearization 
is presently the simplest tool widely used for analysis of non~ linear stochas.tic probleins, however, 
the major limitation of this method is seemingly that its accuracy decreases. as the non-line~rity 
increases and it can lead to unacceptable errors in the second moments [1, 6]. 

- __ To improve the accuracy of this excellent technique-a. new criteriOn for determining the coeffi~ 
cients of linea.riz~tion is proposed in the paper. The criterion is based on the probabilistic approach 
to the approXimate solutions of stochastic equations. The proposed method is then applied to- an 
oscillator with non4 linear stiffness under a. zero mean Gaussian white noise. It is obtained that the 
method yieldf? ~·signitlca._nt impro~_ement o~er the corresponding accuracy of the' claSsical Gaussian 
equiValeilt lineaiiza.tiOn for bOih_weak and strong non~linearities. . 

2. GAUSSIAN EQUIVALENT LINEARIZATION (GEL) 

-To describe the basic idea. of GEL we consider the non~linear stochastic equation 

z +2hz+ w5z + eg(z,z) = f(t) (2.1) 
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where a dot denotes time differentiation, h, Wo, e are positive constants, g is a non-linear functiOn 
which can be expanded into a polynomial series form. The excitation f(t) is a zero mean Gaussian 
stationary process with the correlation function and spectral density given, respectively, by 

R1(r) = (f(t)f(t + r)), (2.2) 

-= 

where ( } denotes the expectation. For the sake of simplicity, we restrict to the case of stationary 
response of equation (2.1L if it exists. 

Denote 
e(z) = z +2hz+ w5z + eg(z, z)- f(t). (2.3) 

Equation (2.i) yields 
e(z) = 0. (2.4) 

Following the GEL method 1 we introduce new linear terms in the expression of e 

e(z) = z +(2h + J')Z + (w~ + A)z + eg(z, z) -J'Z- AZ- f(t) (2.5) 

Let x(t) be a stationary solution of the linearized equation 

ii + (Zh + Jl)x + (w~ + A)x- f(t) = 0. (2.6) 

Using (2.6) one gets from (2.5) 

e(x) = eg(x, x) - J'X- AX. (2. 7) 

If x(t) is such a solution for which e(x) = 0, it is evident that x(t) is also an exact solution 
for the ofiginal non-linear e_quation (2.1). However, it is seen that it is not possible and e(x) is an 
equation error which is different from zero. Thus, the problem reduces to the line·arized equation 
(2.6) where the coefficients of linearization J', A are to be found from an optimal criterion. There 
are some criteria for determining the coefficients p., ..\ (see e.g. [12]}. The most extensively used 
criterion is the mean square error criterion which requir-es that the mean square of equation error 
be minimum 

Thus, from 

it follows 

(e2 (x)) = ((eg(x,x) -l':i:- Ax) 2
)- min. 

. ~.1 

aa (e2 (x)) = 0, 
I' . 

a 
-(e2 (x)) = 0 
8A 

(2.8) 

(2.9) 

Since the pro.cess x-(t) is a solution of the linearized equation (2.6) under Gaussian process 
excitation, one gets that x-(t) and X(t) are Gaussian or normal processes. Hence, all higher moments 
(gx), (gx) can be expressed in terms of second moments (x2 ), (:i:2 ) and the relation (2.9) results in 
two algebraic equations for 4 unknowns J', .\, {x2 ) and (±2 ). To close the system (2.9) two other 
equations for second moments (x2), (x2) can be derived from (2.6) 

= 

f w2 S1(w)dw 
( :i:

2
) = ""( 2c:-h-+-J'"""')""2w"""'2,-+-'-. >,-( w-'=2-_-w'~,...-~A )"'2 

-= (2.10) 

-= 
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So, the classical version of GEL as described above supposes that the minimization of the 
equation error in mean square sense may give a minimization of the solution error. However, it 
has been shown by many authors that in the case of major non-linearity the solution error may 
be unacceptable for the second moments. One of the possible reasons is expected to obtain by 
substituting (2.9) into (2.8) 

( 2( )) 2(( 2) (g:i;)2 (gx)2) 
e x min = e g - (:i;2) (x2) 

It is seen from (2.11) that when e becomes large (e2)uoin may become large too. 

3. PROBABILISTIC APPROACH TO GEL 

An alternative approach to GEL is the probabilistic one which requires that 

P{ - p::; e(x) ::; p} -max 
~.>. 

(2.11) 

(3.1) 

where P{E} is the probability of an event E, and pis a small positive constant. denote p(y, p., >.) 
the probability density function of the stationary random process e(x). One has 

p 

P{- p::; e(x) ::; p} = J p(y, p., >.)dy"' 2pp(O, p., >.). (3.2) 
-p 

So, instead of (3.1) one can require 

p(O, p., >.)-max. 
~.>. 

(3.3') 

For further analysis one can use an approximate analytic representation of the probability · 
density function of a random process [1, 5, 9]. An alternative possibility is to express the unknown 
even probability density p(y) approximately by a truncated Grnm-Charlier series 

,-y' /Z{e') { N 1 b2k ( y ) } 
p(y,p.,>.) = ~ 1+ t; (2k)! (e2)kH2k M (3.4) 

where b2k are quasi- moments of order 2k, H2k(x) are Hermite polynomials which satisfy the 
differentiation law 

d 
dx H,.(x) = nH,._,(x) (3.5) 

and ·the recurrence relation. 
Hn+t(x) = xH,.(x)- nH,._,(x). (3.6) 

Substituting (3.4) into (3.3) yields the following criterion far determining the coefficients of 
linearization p., A 

(3.7) . 

In the case the summation in (3.4) has only one tenn, i.e. when the equation error process e 
is supposed to be a Gaussian one, .the-criterion (3.7) reduces to 

1 
==-max. 

y -"1~"\ e-1 Jl,A 
(3.8) 
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Hence, one obtains again the mean square error criterion (2.8). In the paper, next extension 
step to the classical GEL, is investigated in detail for the case N = 2, so the criterion (3.7} yields 

·p(o,,.,.\) = k{l+! (((e;))2 - 3)·}--+ max 
2?T(e2) 8 e ~.> 

(3.9} 

since b4 = (e4)- 3(e2 ) 2 , H 4(x) = x4 - 6x2 + 3. It is seen from (3.9} that the equation error fourth 
moment {e4 ) is involved in the procedure determining the linearized coefficients it p and A. 

4. CLOSE EQUATIONS FOR RESPONSE SECOND MOMENTS 

In this section four .equations used to determine four unknowns (x2 ), ( :i:2 ), /Jo and ). are derived 
in explicit form. Two of them were obtained already in (1.10}, another two can be obtained from 

a a,. p(o, ,., .\) = o, 
a 

a>. p(o, ,., .\) = o (4.1} 

Using (3.9) we get 

(4.2) 

where s = IJ.,A. Thus, it follows from (4.1) and (4.2) 

(4.3) 

Further, using (2.7} gives 

(e2 ) = e2 (g2 ) + ,.2 (:i:2
)- 2e~Jo(gx) + .\2 (x2

)- 2s.\(gx) 

(e4
) = e4 (g4

) + p 4 (:i:4 ) .:_ 4ep3 (g:i:3 ) + 6s2p2 (g2 :i:2)- 4e3 1Jo(g"x) (4.4} 

+ 12e3p.\(g2x:i:) -12sp.\2 (gx2x)- 12s1Jo2 A(gx:i:) + 61Jo2 .\2 (x2 x2 ) 

+ 4A1Jo3 (x:i:3
) + .\4 (x4

)- 4o.\3 (gx3
) + 6s2

.\
2 (g2 x2

)- 4s3.\(g"x) 

The explicit expression for (4.3) can be determined easily by substituting (4.4) into (4.3}. 
Hence, there are 4 equations (2.10}, (4.3) for 4 unknowns (x2 ), (:i:2 ), /Jo and .\. The problem of 
existence and uniqueness of solutions for the system of equations (2.10), (4.3) requires a further 
investigation. 

5. DUFFING OSCILLATOR 

As an illustration of the technique proposed consider a. single degree of freedom system with 
linear damping and non-linear spring,, the Duffing oscillator, which has been applied to model 
many mechanical systems. The equation of motion of S1J.ch a. system is given by 

(5.1) 

here f(t) is a Gaussian white noise excitation for which 

(f(t)f(t + r)) = cr2 S(r}, (5.2} 
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where 5{r) is the Dirac delta function. 
It is easy to see that the equations {4.3) are satisfied for I"= 0 and then reduce to the following 

equation for A: 

l(A) = 8{ (x2).>.2- 6e1(x2)2). + 15<212(x2)3){3(x2)2.>.3- 45qx2)3 ).2 

+ 315e212(x2)4A- 945<313(x2)5)- 10({x2)A- 3<1{x2)2)[3(x2)2(A4 

- 20q(x2)A3 + 210e3')2(x2)2 A 2 - 1260e01 3(x2)3 A+ 3465e4 1 4(x2)4) {5.3) 

+ (x2)2(A 4 - 12q(x2)A3 + 66e21 2(x2)2A2 -180e313.(x2)3A + 225e414(x2
)
4)] = 0: 

Thus, the corresponding linearized equation {2.6) is 

ii +2M+ (w~ + A)x = f(t). 

The second equation for A and (x2) is obtained from (5.4) and noting (5.2) 

From {5.3) one gets 
l{O) = 205200(x2)8 > 0 

l(A--> +co)"' -16(x2)3 ).5 < 0. 

Hence, there exists in the interval (O,+co) A. such that 

l(} .• ) > 0 for A< A., 

t(A.) = o, and l(A.) < o for A>>< •. 

{5.4) 

(5.5) 

(5.6) 

(5.7) 

Inequalities (5. 7) indicate that the function p(O, A) has a local maximum at the value A = A. 
for the Dulling oscillator. The results obtained by the procedure proposed (equations (5.3) and 
(5.5)) (x2 }z are compared in Table 1 which the values w = 1, 1 = 1, 0'2 = 4h, and for different 
values of e. In addition, the results obtained by the classical GEL technique (x2 ). are also shown. 
Obviously, the solutions (x2}2 are much closer to. the exact solutions (x2 ) e, than the solutions . 
(x2).. 

Table 1. Approximate mean square of displacement, Dulling equation (5.1}, (5.2) 

N e (x2), (x2), Error% (x2)o Error% 

1 0.1 0.8176 0.8054 -1.49 0.8250 0.90 
2 1.0 0.4679 0.4343 -7.19 0.4615 -1.36 
3 10.0 0.1889 0.1667 -11.8 0.1802 -4.61 
4 100.0 0.0650 0.0561 -13.6 0.0610 -6.15 

7. CONCLUSIONS 

The main question inherent in Gaussian equivalent linearization is how the coefficients of the 
linearized equation are found. Instead of the well·known inean square criterion, a probabilistic 
criterion has been proposed to determine these coefficients. Further, a truncated Gra.m·Charlier 
series with two .terms is used to express approximately the even probability denSity function of 
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equation error. It is obtained that the technique proposed is a quite general and simple as within 
the scope of Gaussian equivalent linearization. Application to Duffing oscillator shows significant 
improvement over the corresponding accura:cy of the classical GEL. 
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TIEU cHUAN xAc suh Dor v6r TUYEN TiNH H6A T\JaNG DUaNG GAUSs 

Trang khuon kh6 cda phmmg phap tuygn tinh h6a tuccrng duccrng Gauss, ·cac tac gilt dii d~ nghj 
m9t tieu chuifn xic suS:t m&i dg xic d!nh c5.c h~ sO tuye'n tlnh h6a tl.l'O'Ilg du-crug nh&m tlnh to<ln 
dip li-ng dlrng cUa h~ ca h9c phi tuye'n ch~u k:lch d9ng ng[u nhien dirug chuin. Kgt qui ip dl.].ng 
cho h~ Duffing cho ke't qui tOt han so v&i plnrang phip tuye'n tinh h6a kinh di~n. 

6 


