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PROBABILISTIC CRITERION FOR-
GAUSIAN EQUIVALENT,_ LINEARIZATION

N. D. ANH, W. SCHIEHLEN
Institute of Mechanics, University of Stutlgart

ABSTRACT, Within the scope of Gaussion equivalent linearization, a néw probahilistic cri-
terion for determining the coefficients of the linearized equiﬁient equation is- proposed to treat
stationary i‘esponse of non-linear systems under zere mean Gaussian random excitation. Application
to the Duffing oscillator .subjgcted to white noise is presented that shows significant improvemnent
over corresponding accuracy of the classical Gaussian equivalent linearization for both weak and
strong non-linearities. ‘

1. INTRODUCTION

In recent years, there has been an extensive investigation into the respomse of non-linear
stochastic systems due to fact that many excitations of engineering interest are basically random
-in nature. Since all real engineering systems are, more or less, non-linear and for those systems the
exact solutions are known only for a number of special cases, it is necessary to develop approximate
techmques to determine the response statistics of non-linear systems under random excitation.
Oune of the known approximate techniques is the Gaussian equivalent linearization which was first
proposed by Caughey [3] and has been developed by many authors, see e.g. (2, 4, 7, §; 10, 11, 13].
The well known classical version of the Gaussian equivalent linearization consists of replacmg a
given non-linear equation by a linear one for which the coefficients of linearization are found from
a mean square error criterion and then evaluated by an assumption about the Gaussianity of the
original non-linear equation response. It has been shown that the Gaussian equivalent linearization
is presently the simplest tool widely used for analysis of non-linear stochastic problems, however,
the major limitation of this method is seemingly that its accuracy decreases as the non-linearity
increases and it can lead to unacceptable errors in the second moments [1, 6).

- To improve the accuracy of this excellent technique a new criterivon for determining the coeﬁi-
cients of linearization is proposed in the paper. The criterion is based on the probabilistic approach
to the approximate solutions of stochastic equations. The proposed method is then applied to an
oscillator with non-linear stiffiness under 2 zero mean Gaussian white noise. It is obtained that the
method ylelds a s1gmﬁca.nt improvement over the corresponding accutacy of the classical Gaussian
equivalent linearization for bol;h ‘weak and strong non-linearities.

2. GAUSSIAN EQUIVALENT LINEARIZATION (GEL)
To describé the basic idea of GEL we consider. the non-linear stochastic equation
P42hivalzveg(zd)=118) - C(2.)
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where a dot denotes time differentiation, h, wy, & are positive constants, g is a non-linear function
which can be expanded into a polynomial series form. The excitation f(t) is a zero mean Gaussian
stationary process with the correlation function and spectral density given, respectively, by

Ry = (S 6+ ), Syl =50 [ Ree)etras ey

where () denotes the expectation. For the sake of simplicity, we restrict to the case of staticnary
response of equation (2.1}, if it exists. '
Denote T
e{z) = £+ 2hi + wiz +eglz,2) - f(t). ‘ {2.3)

Equation (2.1) yields . :
e(z) = 0. o : (2.4)

Following the GEL met;hod, we introduce new linear terms in the expiession of ¢
e(z) = 5+ (2h + u)z + (w2 + A)z + eg(z,2) — pz — Az — f(t) (2.5)
Let z(t) be a stationary solution of the linearized equation.
CEF2h+ @i+ (24 Nz - f() =0. (2.6)
Using (2.6) one gets from (2.5) |
| ‘ e{z) = eg(z, £) — uz — Az. (2.7)

If x(t) is such a solution for which e(z) = 0, it is evident that z(t} is also an exact solution
for the original non-linear equation (2.1). However, it is seen that it is not possible and e(z) is an
equation error which is different from zero. Thus, the problem reduces to the linearized equation
(2.8) where the coefficients of linearization 4, A are to be found from an dptimal criterion. There
are some criteria for determining the coefficients u, A (see e.g. [12]). The most extensively used
criterion is the mean square error criterion which requires that the mean square of equation error
be minimum ' e

(2(a)) = (fea(a 2) = pé = 12)%) ~ mi. ST
Thus, fx‘oﬁ 5 3
@) =0 S =0
it follows '

= (—g-'f-)- , = {gz) | (2.9)
(#%) (z2) '

Since the process z(t} is a solution of the linearized equation (2.6) under Gaussian process
excitation, one gets that z(t) and 2(¢) are Gaussian or normal processes. Hence, all higher momeuts
{gz), (g%) can be expressed in terms of second moments (2}, (£2) and the relation {2.9) results in
two algebraic equations for 4 unknowns g, A, {(z%) and (#?). To close the system (2.9} two other
equations for second moments {z2), (3%} can be derived from (2.6)

(32) = w28 (w)dw
B (2h + p)Pw? + (w2 —wd — A)2
-—oa

8o (2.10)
/:62) - / Sf(w}dw
' (2h + p)2w? + (w2 = wf - A)?




So, the classical version of GEL as described above suppoges that the minimization of the
equation error in mean square sense may give a minimization of the solution error. However, it
has been shown by many authors that in the case of major non-linearity the solution error may
- be unacceptable for the second moments. One of the possible reasons is expected to obtain by
substituting (2.9) into (2.8)

1t is seen from {2.11) that when e becomes large {¢2),,;, may become large too.

3. PROBABILISTIC APPROACH TO GEL

An alternative approach to GEL is the probabilistic one which requires that

By

P{ —p<elz) < p} — max 7 (3.1)

where P{E} is the probability of an event E, and p is a small positive constant. denote p{y, i, A)
the probability density function of the stationary random process e¢{z). One has

P
P{ —p<elz) < p} = fp(y,ﬂ,)\)dy = 2pp(0, i, A). (3.2)
- —p . .
So, instead of (3.1} one can require
p(0, , 3) — max. | (3.3)

oA

For further analysis one can use an approximate analytic representation of the probability -

density function of a random process (1, 5, 9|. An alternative possibility is to express the unknown
even probability density p(y} approximately by a truncated Gram-Charlier series.

g~ /2(e%) 2k
Hoy

o= SR )

where bar are quasi - moments of order 2k, Hax(xz) are Hermite polynomials which satisfy the
differentiation law p

dz

(3.4)

Ho(z) = nH,_1(z) | (3.5)
and the recurrence relation A .
Huyi(z) =2H,(z) - nH,_1(z). (3.6

Substituting (3.4) into (3.3) yields the following criterion for determining the coefficients of
linearization pu, A

‘ N B
P(O,P-, A) = _"2?1(_;-2)-{1-*- Z (23];)1 (2;; H?k(o)} - Iﬂaj\x (37) :

In the case the summation in (3.4} has only one term, i.e. when the equation error process e

is supposed to be a Gaussian one, the criterion {3.7) reduces to

1
Vv 2n{e2) e ‘ (3:8)
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(.e_z(m))lu'm = 52(<§2> — (gfi;>2 (gz)z) ’ | -. (2.11) i



Hence, one obtains again the mean square error criterion (2.8). In the paper, next extension
step to the classical GEL, is invesiigated in detail for the case N = 2, so the criterion (3.7} yields

p(0,u,X) = -—2—;6—2—)-{1 + %((i:?g - 3)} —+ Ii:l,zt\x : (3.9)

since by = (e%) — 3({e?)2, Hy(z) =* — 6% + 3. It is seen from (3.9) that the equation error fourth
moment {¢?) is involved in the procedure determining the linearized coefficients it 4 and A.

4. CLOSE EQUATIONS FOR RESPONSE SECOND MOMENTS

In this section four equations used to determine four unknowns {z2), (%), 4 and A are derived
in explicit form. Two of them were obtained already in (1.10), another two can be obtained from

0w =0 ZpOmN =0 (4.)
Using (3.9) we get
o0 3) = ol (2 T = 5 + () ) (42)

where s = y, A. Thus, it follows from 4.1) and (4.2)
) () = S+ 2 =05 6= ()
s 3s ' ’ '

Further, using (2.7) gives

(%) = €2(g") + w37} — 2em(gd) + X*(a") ~ 2eM(ga)
(%) = e*(g*) + u? (2%) — 4ep®{04°) + 6% (44%) — 46°u(d° %) (4.4)
+ 126%ux{g?z3) — 12eu)¥{gz’1) — 125;12)\{9.1:&) + 64222 (2242)
+ a2 (z2®) + Az — 4623 (gz®) + 662207 (g% 5%) — 4°A (g% x)
The explicit expression for (4.3) can be determined easily by substituting {4.4) into (4.3).
Hence, there are 4 equations (2.10), (4.3) for 4 unknowns (z?), (2%}, u and A. The problem of

existence and uniqueness of solutions for the system of equations (2.10}, (4.3) requires a further
investigation. ' '

5. DUFFING OSCILLATOR
As an illustration of the technique proposed consider a single degree of freedom systexﬁ with

linear damping and non-linear spring, the Duffing oscillator, which has been applied to model
many mechanical systems. The equation of motion of such a system is given by

&+ 2hE + wiz+evz® = f(t) - (5.1)
here flt)isa Gaussian white noise excitation for whi'ch |
2 0_2 .
(fe}f e+ 7)) =0%6(r), Splw) =, (5.2)
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where §(r} is the Dirac delta function.
It is easy to see that the equations (4.3) are satisfied for u = 0 and then reduce to the following
equation for A:

£(3) = 8({z)2? — ey (222X + 15e27%(22)3) (3(z%) 2% — 45eyz?) A2
+ 3156293 (22)4X — 945¢%4%(2%)®) — 10((z®)A ~ 3ev(z?)?) [3(z7) (A" _
— 2067(z2)X% + 210633 (2%) A% — 126057 3(z?)3 A + 3465 4 (a8)t)  (5.3)
4+ (27)2(0% — 12e7{e?)2° + 66¢%7% (2222 — 180e34%(z*)3A + 22564 (%)) = 0.

Thus, the corresponding linearized equation (2.6) is
£+ 2he + (WE + M)z = f(t). (5.4)
The second equation for A and (z?) is obtained from (5.4) and noting (5.2}

a2

(%) = T o (5.5)

From (5.3) one gets
£(0) = 205200(z*}* > 0

5.6
£} — +oo) m ~16(z%)°A® < 0. (5-6)
Hence, there exists in the interval (0, +o0) A. such that
LA) >0 for A<A,
()>0 for A<A, o

¢X.)=0, and £A) <0 for A>X,.

Inequalities (5.7) indicate that the function p{0,A) has a local maximum at the value A = A,
for the Duffing oscillator. The results obtained by the. procedure proposed (equations (5.3) and
~ (5.5)) (z®}3 are compared in Tablé¢ 1 which the values w = 1, ¥ = 1, ¢® = 4k, and for different
values of €. In addition, the results obtained by the classical GEL technique {z?), are also shown.
Obviously, the solutions {22); are much closer to the exact solutions (z2)., than the solutions .
(%)1. '

Teble 1. Approximate mean square of displacement, Duffing equation (5.1}, {52)

N e (z%), {z%)y Error % (2% Error %
1 0.1 0.8176 0.8054 -1.49 0.8250 0.90
2 1.0 0.4679 0.4343 -7.19 0.4615 -1.36
3 10.0 0.1889 0.1667 -11.8 0.1802 -4.61
4 100.0 0.0650. 0.0561 -13.6 0.0610 -6.15

7. CONCLUSIONS

The main question inherent in Gaussian equivalent linearization is how the coefficients of the
linearized equation are found. Instead of the well-known imean square criterion, a probabilistic
criterion has been proposed to determine these coefficients. Further, a truncated Gram-Charlier
series with two terms is used to express approximately the even probability density function of
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equation error. It is obtained that the technique proposed is a quite general and simple as within
the scope of Gaussian equivalent linearization. Application to Duffing oscillator shows significant
improvement over the corresponding accuracy of the classical GEL.
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TIEU CHUAN XAC SUAT BOI VOI TUYEN TINH HOA TUONG DUONG GAUSS

Trong khudn khd cda phuﬂng phdp tuyén tinh héa twong dwong Gauss, cic tdc gid d¢d d8 nghi

mdt tiéu chuin xdc suit méi 48 xdc dinh cdc hé s& tuyén tinh héa twong dwong nhim tinh todn
dip tmg dirng cda hé co hoc phi tuy&n chiu kich ddng ngiu nhién dirng chuin. K&t qui 4p dung
cho hé Duffing cho ké qud t8t hon so véi phwong phdp tuyén tinh héa kinh dién.




