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Abstract. This paper presents an analytical investigation on the buckling and postbuck-
ling behavior of thin composite cylindrical panels reinforced by single walled carbon nan-
otubes (SWCNTs), exposed to thermal environments and subjected to uniform axial com-
pression. Material properties of isotropic matrix phase and carbon nanotubes are assumed
to be temperature dependent, and effective properties of carbon nanotube-reinforced com-
posite (CNTRC) are functionally graded in the thickness direction and estimated by ex-
tended rule of mixture. Governing equations are based on the classical thin shell theory
taking von Karman–Donnell nonlinearity and initial geometrical imperfection into con-
sideration. Approximate solutions are assumed to satisfy simply supported boundary
conditions and Galerkin procedure is applied to derive explicit expressions of buckling
loads and load-deflection relation. Effects of volume fraction and distribution type of car-
bon nanotubes, geometrical parameters, elevated temperature and initial imperfection on
the nonlinear stability of CNTRC cylindrical panels are analyzed and discussed. The nov-
elty of the present study is that closed-form results of buckling load and nonlinear load-
deflection relation can be readily used to analyze the buckling and postbuckling behaviors
of axially loaded CNTRC cylindrical panels.

Keywords: carbon nanotube-reinforced composite, cylindrical panel, buckling and post-
buckling, temperature dependent properties, imperfection.

1. INTRODUCTION

Due to unprecedented physical and chemical properties, carbon nanotubes (CNTs)
have attracted huge attention in most areas of science and engineering in recent years.
No previous material has displayed the combination of superior mechanical, thermal and
electrical properties as CNTs [1,2]. The single-walled carbon nanotube (SWCNT) consists
of a single sheet of grapheme rolled seamlessly to form a cylinder with diameter of order
of 1 nm and length of up to centimeters. The multi-walled carbon nanotube (MWCNT)
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having diameters from 2 to 100 nm and lengths of tens of microns, consists of an array of
such cylinders formed concentrically and separated by 0.35 nm. These exceptional me-
chanical properties and extraordinary thermal and electrical properties with very large
aspect ratio make CNTs ideal candidates as advanced filler materials in composites [3].
Shen [4] proposed the concept of functionally graded carbon nanotube-reinforced com-
posite (FG-CNTRC) material properties of which are varied across the thickness direction
of plate structure according to functional rules and investigated the nonlinear bending
behavior of thick FG-CNTRC plates using a semi-analytical approach. Stimulated by
this work of Shen, subsequent studies relating to linear buckling and postbuckling be-
havior of CNTRC structures have been performed. Liew and his co-workers [5–7] used
a numerical approach with element-free kp-Ritz method and first order shear deforma-
tion theory (FSDT) to investigate the linear buckling of rectangular and skew FG-CNTRC
plates under mechanical loads. There is no temperature effect considered in their works.
Wattanasakulpong and Chaikittiratana [8] and Wang et al. [9] made use of analytical and
semi-analytical solutions, respectively, to study the linear buckling of simply supported
FG-CNTRC plates subjected to edge compressive loads. Based on adjacent equilibrium
criterion and analytical solution, Mehrabadi et al. [10] dealt with mechanical buckling
problem of CNTRC rectangular plates. Shen and Zhang [11] studied the buckling and
postbuckling behavior of FG-CNTRC plates under thermal loads using a two step per-
turbation technique. Recently, Tung [12] presented an analytical study on the buckling
and postbuckling behavior of FG-CNTRC plates under two types of thermal loads incor-
porating effects of elastic foundations and tangential constraints of boundary edges.

Cylindrical panels are important structures widely used in many engineering appli-
cations and the static and dynamic responses of these panels are essential problems. Bas-
ing on analytical approaches and theory of elasticity, Alibeigloo [13, 14] and Pourasghar
and Chen [15] examined the bending behavior of FG-CNTRC cylindrical panels includ-
ing the effects of piezoelectric layers [13], thermal environments [14] and elastic founda-
tions [15]. Free vibration response of FG-CNTRC cylindrical panels has been addressed in
works of Alibeigloo [16] using theory of elasticity and Kiani and his collaborator [17, 18]
utilizing Ritz method with different shape functions. Buckling and postbuckling behav-
ior of FG-CNTRC cylindrical panels have been investigated in some works. Nasihatgozar
et al. [19] used analytical solutions based on the thin shell theory to study the linear buck-
ling of FG-CNTRC cylindrical panels under axial compression. Linear buckling analysis
of FG-CNTRC cylindrical panels under axial compression and shear has been carried out
by Garcı́a et al. [20] making use of a numerical approach. Based on a higher order shear
deformation shell theory and a semi-analytical approach with a two step perturbation
technique which is quite cumbersome, Shen and his co-workers presented studies on the
postbuckling behavior of FG-CNTRC cylindrical panels subjected to some loading condi-
tions such as lateral pressure [21], axial compression [22] and combined loads [23] taking
into account the effects of elastic foundations and thermal environments. Static buckling
behavior of plates and cylindrical panels made of laminated, functionally graded and
CNT composite materials have been addressed in works [24–27] using numerical meth-
ods. It is evident from the literature that analytical investigations on the buckling and
postbuckling behavior of FG-CNTRC cylindrical panels are very scarce.
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This paper presents an analytical approach to investigate the buckling and post-
buckling behavior of FG-CNTRC cylindrical panels exposed to thermal environments
and mechanically loaded by axial compression. Material properties of isotropic matrix
and carbon nanotubes are assumed to be temperature dependent and effective properties
of CNTRC are estimated by extended rule of mixture. CNTs are reinforced into matrix
through uniform distribution or functionally graded distribution. Approximate solutions
of deflection and stress functions are assumed to satisfy simply supported boundary con-
ditions and Galerkin method is applied to obtain explicit expressions of buckling loads
and load-deflection relation. Numerical illustrations are carried out to show the effects
of CNT volume fraction and distribution type, geometrical parameters, elevated temper-
ature and initial imperfection on the buckling and postbuckling behavior of FG-CNTRC
cylindrical panels. The closed-form results of the present paper have practical signifi-
cances and new contribution in comparison with aforementioned investigations [20, 22]
relating to buckling and postbuckling behaviors of axially compressed CNTRC cylindri-
cal panels.

2. CARBON NANOTUBE-REINFORCED COMPOSITE CYLINDRICAL PANELS

Consider a composite cylindrical panel of axial length a, circumferential length b,
radius of curvature R and thickness h reinforced by aligned SWCNTs (H and b1 are de-
picted for sake of comparison in later section).

The panel is defined in a coordinate system xyz origin of which is at the corner of
the panel on the middle plane, x, y are in-plane coordinates in axial and circumferential
directions of the panel, respectively, and z is in the direction of inward normal to the mid-
dle surface, as shown in Fig. 1. The panel is axially compressed (i.e. in x direction) by
pressure P uniformly distributed on curved edges x = 0, a and is exposed to thermal en-
vironment with uniform temperature rise. Thus, the direction of compression is the same
as the aligned direction of CNTs. In this study, the SWCNTs are reinforced into isotropic
polymer matrix through uniform distribution referred to as UD or functionally graded
distribution in which CNTs are varied in the thickness direction according to three dif-
ferent patterns referred to as FG-O, FG-V and FG-X. The middle plane of the cylindrical
panel is CNT-rich for the FG-O type, the top surface of the panel is CNT-rich for the FG-V
type and both top and bottom surfaces of the panel are CNT-rich in case of the FG-X type,
as illustrated in the Fig. 1. According to micromechanical approach, the effective proper-
ties of composite materials may be determined by Mori–Tanaka scheme or the linear rule
of mixture. It is known that the rule of mixture results in simplicity and convenience in
application to predict the overall material properties and global responses of the struc-
tures. A good agreement between the Mori-Tanaka scheme and the linear rule of mixture
for ceramic-metal functionally graded structures has been demonstrated by Librescu et
al. [28]. Very recently, Garcı́a et al. [20] indicated that Mori–Tanaka approach agrees well
with extended rule of mixture for determining buckling loads of CNTRC cylindrical pan-
els under axial compression. In the present study, the extended rule of mixture is used
to estimate the effective Young’s moduli and shear modulus of the CNTRC cylindrical
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Fig. 1. Geometry, coordinate system and CNT distribution types of a cylindrical panel. 
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Fig. 1. Geometry, coordinate system and CNT distribution types of a cylindrical panel

panels as [4]

E11 = η1VCNTECNT
11 + VmEm , (1a)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em , (1b)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm , (1c)

where ECNT
11 , ECNT

22 and GCNT
12 are the Young’s moduli and shear modulus, respectively, of

the carbon nanotube, and Em and Gm are Young’s modulus and shear modulus, respec-
tively, of the isotropic matrix. It is noted that 1 and 2 subscripts in effective properties
correspond to longitudinal direction x and transverse direction y, respectively. The co-
efficients ηj(j = 1, 2, 3), known as the CNT efficiency parameters, are introduced into
Eqs. (1) to account for the size-dependent material properties and will be determined
later. VCNT and Vm are the volume fractions of CNTs and matrix, respectively, and are
related by

VCNT + Vm = 1. (2)
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The volume fractions VCNT for four types of CNT distributions are assumed as [20]

VCNT =



V∗CNT (UD)(
1− 2z

h

)
V∗CNT (FG−V)

2
(

1− 2 |z|
h

)
V∗CNT (FG−O)

2
(

2 |z|
h

)
V∗CNT (FG− X)

(3)

where
V∗CNT =

wCNT

wCNT + (ρCNT/ρm) (1− wCNT)
, (4)

in which wCNT is the mass fraction of CNTs in the CNTRC panel, and ρCNT and ρm are
the densities of the CNTs and matrix, respectively. It is noted that, in such a way, the
uniformly distributed (UD) CNTRC panel, i.e. VCNT = V∗CNT, and the three cases of
functionally graded (FG) CNTRC panel have the same value of mass fraction of the CNT.
Poisson’s ratio depending weakly on position can be determined by

ν12 = V∗CNTνCNT
12 + Vmνm , (5)

where νCNT
12 and νm are Poisson’s ratios of the CNT and matrix, respectively.

The coefficients of thermal expansion of the CNTRC in the longitudinal and trans-
verse directions have the form as [4, 11, 20]

α11 = VCNTαCNT
11 + Vmαm , (6a)

α22 =
(

1 + νCNT
12

)
VCNTαCNT

22 + (1 + νm)Vmαm − ν12α11 , (6b)

where αCNT
11 , αCNT

22 and αm are thermal expansion coefficients of the CNT and isotropic
matrix, respectively. Evidently, α11 and α22 are also graded in the thickness direction of
the cylindrical panel.

3. GOVERNING EQUATIONS

Based on the classical shell theory, the strains ε11 = εxx, ε22 = εyy, γ12 = γxy at a
distance z from the mid-plane are expressed as ε11

ε22
γ12

 =

 εx0
εy0

γxy0

+ z

 kx
ky

2kxy

 , (7)

where εx0, εy0 and γxy0 are normal and shear strains, respectively, at the middle surface of
the panel, and kx, ky, kxy are changes of curvature and twist which are related to the dis-
placement components u, v and w in the coordinate directions x, y and z, respectively, as εx0

εy0
γxy0

 =

 u,x + w2
,x/2

v,y − w/R + w2
,y/2

u,y + v,x + w,xw,y

 ,

 kx
ky
kxy

 =

 −w,xx
−w,yy
−w,xy

 , (8)



52 Le Thi Nhu Trang, Hoang Van Tung

where von Karman–Donnell nonlinearity is included and subscript prime (,) represents
the partial derivative.

Stress-strain relations for an anisotropic CNTRC cylindrical panel are expressed as
[5, 12, 17, 18] σ11

σ22
σ12

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

 ε11
ε22
γ12

−
 α11

α22
0

∆T

 , (9)

where

Q11 =
E11

1− ν12ν21
, Q22 =

E22

1− ν12ν21
, Q12 =

ν21E11

1− ν12ν21
, Q66 = G12 , (10)

and ∆T is the temperature change with respect to a reference state. The force and moment
resultants of a CNTRC cylindrical panel are expressed as

(
Nx, Ny, Nxy

)
=

h/2∫
−h/2

(σ11, σ22, σ12) dz,
(

Mx, My, Mxy
)
=

h/2∫
−h/2

(σ11, σ22, σ12) zdz. (11)

Introduction of Eqs. (1), (3), (7) into Eqs. (9), then substituting the obtained relations
into Eqs. (11) lead to the force and moment resultants in the form

Nx
Ny
Nxy
Mx
My
Mxy

 =


e11 ν21e11 0 e12 ν21e12 0

ν12e21 e21 0 ν12e22 e22 0
0 0 e31 0 0 e32

e12 ν21e12 0 e13 ν21e13 0
ν12e22 e22 0 ν12e23 e23 0

0 0 e32 0 0 e33




εx0
εy0

γxy0
kx
ky

2kxy

−


e11T
e21T

0
e12T
e22T

0

∆T, (12)

where

(e11, e21, e31) =

h/2∫
−h/2

(Q11, Q22, Q66) dz, (e12, e22, e32) =

h/2∫
−h/2

(Q11, Q22, Q66) zdz,

(e13, e23, e33) =

h/2∫
−h/2

(Q11, Q22, Q66) z2dz,

(13a)

e11T =

h/2∫
−h/2

Q11 (α11 + ν21α22) dz, e21T =

h/2∫
−h/2

Q22 (ν12α11 + α22) dz,

e12T =

h/2∫
−h/2

Q11 (α11 + ν21α22) zdz, e22T =

h/2∫
−h/2

Q22 (ν12α11 + α22) zdz.

(13b)

The nonlinear equilibrium equations of a geometrically perfect thin cylindrical panel
are expressed in the form [29]

Nx,x + Nxy,y = 0, (14a)
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Nxy,x + Ny,y = 0, (14b)

Mx,xx + 2Mxy,xy + My,yy + Nxw,xx + 2Nxyw,xy + Nyw,yy +
Ny

R
= 0. (14c)

Eqs. (14a) and (14b) are identically satisfied by a stress function f (x, y)defined as

Nx = f,yy, Ny = f,xx, Nxy = − f,xy. (15)

From Eqs. (8) and (12), the nonlinear equilibrium equation (14c) of a CNTRC cylin-
drical panel taking into account geometrical imperfection is rewritten in the form

a11w,xxxx + a21w,yyyy + a31w,xxyy + a41 f,xxyy − f,yy
(
w,xx + w∗,xx

)
+2 f,xy

(
w,xy + w∗,xy

)
− f,xx

(
w,yy + w∗,yy

)
− f,xx

R
= 0,

(16)

where a11, a21, a31, a41 were given in the work [12] and w∗(x, y) is a known function rep-
resenting initial geometrical imperfection. Next, strain compatibility equation of a cylin-
drical panel has the form [29]

εx0,yy + εy0,xx − γxy0,xy = w2
,xy − w,xxw,yy − w,xx/R. (17)

From Eqs. (12) and (15), the strain compatibility equation of a geometrically imper-
fect CNTRC cylindrical panel is rewritten in the form

a12 f,xxxx + a22 f,xxyy + a32 f,yyyy + a42w,xxxx + a52w,xxyy + a62w,yyyy

−w2
,xy + w,xxw,yy − 2w,xyw∗,xy + w,xxw∗,yy + w,yyw∗,xx +

w,xx

R
= 0,

(18)

in which coefficients a12, a22, a32, a42, a52, a62 can be found in the work [12] and are omitted
here for the sake of brevity.

In the present study, all edges of CNTRC cylindrical panel are assumed to be simply
supported and freely movable. The associated boundary conditions are

w = Mx = Nxy = 0, Nx = Nx0 at x = 0, a
w = My = Nxy = 0, Ny = Ny0 at y = 0, b

(19)

where Nx0 = −P.h is prebuckling force resultant on the curved edges x = 0, a [29] and
Ny0 is zero-valued in the present condition of loading.

One-term approximate solution satisfying out-of-plane condition (19) is assumed as

(w, w∗) = (W, µh) sin βmx sin δny, (20)

where W is the deflection amplitude, βm = mπ/a, δn = nπ/b and m, n are positive
integers representing numbers of half waves in the x and y directions, respectively. Also,
non-dimensional coefficient µ represents size of initial geometrical imperfection assumed
to be in the form of the deflection. Next, to satisfy approximately in-plane boundary
conditions (19), the stress function is assumed as

f = A1 cos 2βmx + A2 cos 2δny + A3 sin βmx sin δny +
1
2

Nx0y2 +
1
2

Ny0x2 , (21)

where A1, A2, A3 are constant coefficients. These coefficients are determined by introduc-
ing solutions (20) and (21) into the compatibility equation (18) as
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A1 =
δ2

n
32a12β2

m
W (W + 2µh) , A2 =

β2
m

32a32δ2
n

W (W + 2µh) ,

A3 = − 1
a12β4

m + a22β2
mδ2

n + a32δ4
n

(
a42β4

m + a52β2
mδ2

n + a62δ4
n −

β2
m

R

)
W.

(22)

Now, the solutions (20) and (21) are substituted into the equilibrium equation (16)
and applying Galerkin method for the resulting equation yield the following expression

P =
a13B2

h
π2m2B2

a

W
W + µ

+
a23B2

h
π2m2B2

a
W +

a33B2
h

π2m2B2
a

W
(
W + 2µ

)
W + µ

+
a43B2

h
π2m2B2

a
W
(
W + 2µ

)
, (23)

where
Ba = b/a, Bh = b/h, W = W/h,

a13 =
π4

B4
h

(
m4B4

a ā11 + n4 ā21 + m2n2B2
a ā31

)
+

π2m2B2
a
(
π2n2 ā41 + BhBaRa

)
B4

h (m
4B4

a ā12 + m2n2B2
a ā22 + n4 ā32)

(
m2

π2 B3
a BhRa −m4B4

a ā42 −m2n2B2
a ā52 − n4 ā62

)
,

a23 =
32mnπ2B2

aγmγn

3B4
h (m

4B4
a ā12 + m2n2B2

a ā22 + n4 ā32)

(
m4B4

a ā42 + m2n2B2
a ā52 + n4 ā62 −

m2

π2 B3
a BhRa

)
,

a33 = − 2nBaRa

3mB3
h ā12

γmγn, a43 =
π4 (m4B4

a ā12 + n4 ā32
)

16B4
h ā12 ā32

,

(24)
in which

(ā11, ā21, ā31) =
1
h3 (a11, a21, a31) , (ā41, ā42, ā52, ā62) =

1
h
(a41, a42, a52, a62) ,

(ā12, ā22, ā32) = h (a12, a22, a32) , Ra = a/R, γi =
1
2

[
1− (−1)i

]
(i = m, n).

(25)

It is evident from Eq. (23) that geometrically perfect CNTRC cylindrical panels (i.e.
µ = 0) exhibit a bifurcation type buckling response with the corresponding buckling
compression loads are predicted as

Pb =
a13B2

h
π2m2B2

a
, (26)

and critical buckling compression load Pcr is the smallest value among values of Pb.

4. RESULTS AND DISCUSSION

Numerical results of the buckling and postbuckling analyses for CNTRC cylindrical
panels subjected to axial compression load in thermal environments are presented in this
section. The CNTRC panels are made of poly{(m-phenylenevinylene)-co-[2,5-dioctoxy-
p-phenylene) vinylene]}matrix material, referred to as PmPV, reinforced by armchair (10,
10) SWCNTs. The temperature dependent properties of the PmPV material are assumed
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to be νm = 0.34, αm = 45 (1 + 0.0005∆T)× 10−6/K and Em = (3.51− 0.0047T) GPa in
which T = T0 + ∆T and T0 = 300 K (room temperature). Evidently, αm = 45× 10−6/K
and Em = 2.1 GPa at room temperature. The temperature dependent material properties
of the (10, 10) SWCNT are given by Shen and Zhang [11] and listed in Tab. 1. By match-
ing the Young’s moduli E11 and E22 of CNTRC obtained by the rule of mixture to those
from molecular dynamics (MD) simulations reported by Han and Elliott [30], the CNT
efficiency parameters η1 and η2 are determined and given in the work of Shen [4]. Ac-
cording to Shen’s results [4], η1 = 0.149, η2 = 0.934 for case of V∗CNT = 0.11; η1 = 0.150,
η2 = 0.941 for the case of V∗CNT = 0.14, and η1 = 0.149, η2 = 1.381 for the case of
V∗CNT = 0.17. In addition, the present study assumes that η3 : η2 = 0.7 : 1 because of the
lack of MD results in the work [30] for shear modulus G12.

Table 1. Temperature dependent properties of (10,10) SWCNT (tube length = 9.26 nm,
tube mean radius = 0.68 nm, tube thickness = 0.067 nm, νCNT

12 = 0.175) [11]

Temperature ECNT
11 ECNT

22 GCNT
12 αCNT

11 αCNT
22

(K) (TPa) (TPa) (TPa) (×10−6/K) (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682
400 5.5679 6.9814 1.9703 4.1496 5.0905
500 5.5308 6.9348 1.9643 4.5361 5.0189

To validate the present approach, the buckling behavior of a CNTRC cylindrical
panel subjected to uniform axial compression load is considered at room temperature.
Critical buckling compression loads for CNTRC cylindrical panels are calculated by us-
ing closed-form expression (26) and listed in Tab. 2 in comparison with results given by
Garcı́a et al. [20] using shell finite elements. As can be seen, a good agreement is achieved
in this comparison.

Table 2. Comparisons of critical buckling load intensity factor (kσ = Pcr/σE, σE = (π2Em/12(1−
ν2

m))(h/b)2) of perfect CNTRC cylindrical panels under axial compression (b1 = 100 cm, a = 2b1,
h = b1/50, V∗CNT = 0.11, T = 300 K, see Fig. 1)

H/R Source UD FG-V FG-O FG-X

0 Garcı́a et al. [20] 15.57 13.76 10.52 20.68
Present 14.11 (1, 1)i 11.45 (1, 1) 9.57 (1, 1) 18.72 (1, 1)

0.45 Garcı́a et al. [20] 121.13 120.76 99.79 131.73
Present 134.92 (2, 2) 142.62 (2, 3) 123.21 (2, 2) 148.56 (1, 2)

0.9 Garcı́a et al. [20] 268.10 268.04 223.02 310.36
Present 276.91 (2, 3) 270.25 (2, 3) 241.37 (2, 3) 323.96 (2, 3)

i The number in brackets indicate the buckling mode (m, n)
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The remainder of this section presents numerical results for CNTRC cylindrical pan-
els with square planform (a = b) under uniform axial compression in the thermal envi-
ronments. The effects of CNT volume fraction V∗CNT, CNT distribution patterns, thermal
environments and geometrical parameters on the critical buckling loads of geometrically
perfect CNTRC cylindrical panels under axial compression are given in Tabs. 3 and 4.

Table 3. Effects of CNT volume fraction and distribution type on the critical buckling loads
Pcr (MPa) of CNTRC cylindrical panels under axial compression in the thermal environments

[a/b = 1, b/h = 50, a/R = 0.3, (m, n) = (1, 1)]

T (K) V∗CNT UD FG-V FG-O FG-X

300 0.11 37.24 27.96 21.83 52.72
0.14 46.04 33.93 26.34 65.86
0.17 57.40 42.95 33.55 81.52

400 0.11 35.30 25.96 20.14 50.51
0.14 43.92 31.80 24.54 63.40
0.17 54.43 39.93 30.98 78.09

500 0.11 33.58 24.12 18.56 48.63
0.14 42.09 29.86 22.88 61.37
0.17 51.80 37.13 28.58 75.18

Table 4. Effects of geometrical parameters on the critical buckling loads Pcr (MPa) of CNTRC
cylindrical panels under axial compression in a thermal environment

(a/b = 1, V∗CNT = 0.14, T = 400 K)

a/R b/h UD FG-V FG-O FG-X

0.3 40 66.74 (1, 1)i 47.62 (1, 1) 36.43 (1, 1) 97.16 (1, 1)
50 43.92 (1, 1) 31.80 (1, 1) 24.54 (1, 1) 63.40 (1, 1)
100 13.50 (1, 1) 10.62 (1, 1) 8.68 (1, 1) 18.39 (1, 1)

0.5 40 72.72 (1, 1) 54.08 (1, 1) 42.46 (1, 1) 103.19 (1, 1)
50 49.91 (1, 1) 38.18 (1, 1) 30.57 (1, 1) 69.43 (1, 1)
100 15.82 (1, 2) 13.25 (1, 2) 10.72 (1, 2) 21.03 (1, 2)

0.8 40 87.30 (1, 1) 69.43 (1, 1) 56.80 (1, 2) 117.90 (1, 1)
50 59.33 (1, 2) 48.58 (1, 2) 38.90 (1, 2) 80.16 (1, 2)
100 20.08 (1, 2) 17.91 (1, 2) 15.02 (1, 2) 25.34 (1, 2)

i The number in brackets indicate the buckling mode (m, n)

Tab. 3 indicates that FG-O and FG-X types of CNT distribution give the smallest and
highest values of critical buckling loads, respectively, and critical loads corresponding to
uniform distribution (UD) of CNT filler are considerably higher than those corresponding
to FG-O and FG-V patterns of CNT distribution. In addition, this table also demonstrates
that the enhancement of CNT volume fraction V∗CNT and environment temperature T
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lead to an increase and decrease, respectively, in critical buckling loads of CNTRC cylin-
drical panels.

Effects of geometrical ratios a/R = (0.3, 0.5, 0.8) and b/h = (40, 50, 100) on the crit-
ical buckling loads Pcr of CNTRC cylindrical panels are given in Tab. 4. It is evident from
the Tab. 4 that the critical buckling loads of CNTRC cylindrical panels subjected to ax-
ial compression in a thermal environment are increased when length-to-radius a/R ratio
increases and remarkably decreased as side-to-thickness b/h ratio is increased. Further-
more, thicker and shallower panels (i.e. smaller values of b/h and a/R ratios) are usually
buckled at fundamental mode (m, n) = (1, 1), whereas the buckling response of thinner
and deeper panels occurs at mode shape (m, n) = (1, 2). In addition, difference between
critical loads corresponding to different types of CNT distribution becomes smaller as
b/h ratio is larger.

Effects of CNT volume fraction and distribution type, geometrical ratios, thermal en-
vironments and initial imperfection on the postbuckling behavior of CNTRC cylindrical
panels under axial compression are graphically given in the following.
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Fig. 2 gives the effects of different types of CNT distribution on the postbuckling
of CNTRC cylindrical panels under axial compression. It is evident that the FG-X type
of CNT distribution yields the highest postbuckling strength, UD type brings to better
load carrying capacity than the remaining two types of functionally graded distribution,
and the load-deflection curves corresponding to FG-O type of CNT distribution are the
lowest. These illustrations confirm a fact that the buckling resistance and postbuckling
loading capacities of CNTRC cylindrical panels are pronouncedly improved as CNTs
are reinforced closer to two surfaces of cylindrical panels. In addition, postbuckling be-
havior of CNTRC cylindrical panels is very stable with extremely benign snap-through
response. This character is an advantage of CNTRC cylindrical panels in comparison
with ceramic-metal functionally graded panels [29] under axial compression because an
intense snap-through response can cause fracture of cylindrical shell panels. Next, Fig. 3
shows that the volume percentage of CNT reinforcement has very sensitive influences on
the postbuckling behavior of CNTRC cylindrical panels and load-deflection curves are
significantly enhanced when the volume fraction V∗CNT is increased.
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Subsequently, the effects of geometrical ratios a/R (= 0.3, 0.5, 0.8) and b/h
(= 40, 50, 80) on the postbuckling of CNTRC cylindrical panels under axial compression
are analyzed in Fig. 4. As can be observed, the buckling compression loads and post-
buckling loading carrying capability of thicker and shallower CNTRC cylindrical panels
(i.e. smaller values of b/h and a/R ratios) are remarkably higher than those of thinner
and deeper panels (i.e. larger values of b/h and a/R ratios). In other words, the effect of
the b/h ratio on the buckling and postbuckling behaviors of CNTRC cylindrical panels is
more impressive than that of the a/R ratio. Moreover, load-deflection equilibrium paths
of geometrically perfect and imperfect panels are more slowly developed when a/R and
b/h ratios become larger.

Next, Fig. 5 examines the effects of thermal environments (T = 300 K, 400 K and
500 K) on the postbuckling behavior of CNTRC cylindrical panels under axial compres-
sion. It is clear that the enhancement of environment temperature causes a remarked
decrease in the buckling loads and load-deflection equilibrium paths of CNTRC cylindri-
cal panels. This fact can be explained that elevated temperature has detrimental effects
on the material properties of isotropic matrix and carbon nanotubes. In addition, the
Figs. 2–5 also indicate that the response of axially compressed CNTRC cylindrical panels
is very sensitive to initial geometrical imperfection and there is no longer bifurcation type
buckling response of CNTRC cylindrical panels as imperfection size µ is not zero-valued
(µ = 0.05).deflection equilibrium paths of geometrically perfect and imperfect panels are more 

slowly developed when /a R  and /b h  ratios become larger.  
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Finally, effects of temperature on the postbuckling behavior of geometrically per-
fect CNTRC cylindrical panels subjected to axial compression for different volume frac-
tions and distribution types of CNTs are analyzed in Figs. 6 and 7. Obviously, buckling
loads and load-deflection curves are decreased due to the presence of elevated tempera-
ture. Furthermore, detrimental influences of temperature on the postbuckling behavior
of CNTRC cylindrical panels are more pronounced for FG-X type of CNT distribution
and higher volume fraction of CNTs.
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5. CONCLUDING REMARKS

The buckling and postbuckling behaviors of CNTRC cylindrical panels exposed to
thermal environments and mechanically subjected to axial compression have been pre-
sented. The material properties of isotropic matrix and carbon nanotubes are assumed
to be temperature dependent, and effective properties of CNTRC are estimated by ex-
tended rule of mixture. Formulations are based on the classical thin shell theory and
explicit expressions of buckling load and load-deflection relation for simply supported
CNTRC cylindrical panels are derived by using Galerkin method. The results reveal that
the postbuckling behavior of axially compressed CNTRC cylindrical panels is very stable
and detrimental snap-through phenomenon is extremely benign. The study also shows
that the CNT volume fraction and geometrical ratios have very sensitive and significant
influences on the buckling and postbuckling behaviors of CNTRC cylindrical panels. In
addition, FG-X type of CNT distribution with two CNT-rich panel surfaces gives pro-
nouncedly beneficial effects on the buckling resistance and load carrying capacities of
FG-CNTRC cylindrical panels. Finally, the examination demonstrates that the enhance-
ment of environment temperature causes a remarked decrease in the buckling compres-
sion loads and postbuckling strength of CNTRC cylindrical panels, especially for FG-X
type of CNT distribution and higher volume fraction of CNTs.
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