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THE ROLE OF THE MATERIAL FRACTURE PROPERTIES
"IN THE SIZE-EFFECT LAW OF CONCRETE STRUCTURES

V. TRANTU
NCNST of Vietnam

ABSTRACT. The size effect of the nominal stress at failure in concrete structures is dealt with
in general. An existence of a rather large fracture process sone in front of crack tip is proved to be the
main reason leading to the size effect of the nominal astrength. On the basis of the new general size-
effect law and numerical results of fracture propagation, a particularly proposed size effeci law for
beams in bending is developed, in which the role of each material fracture characteristic, especially
the shape of the stress - crack opening curve, is elaborated clearly.

1. INTRODUCTION

1t has been proved that the fracture process zone (the micro crack zone} existing in front of a
crack tip is to be considered as the main factor causing the nonlinear fracture in concrete structures.
Furthermore, the crack tip front-blunting phenomenon {Bazant, {2]) has caused deviations of the
wellknown law of structural size effect from the linear elastic fracture mechanics (LEFM). The
size-effect law discovered by Bazant in 1984 is mainly based on the arguments resulting from the
strength criterion and the linear elastic fracture theory. In the strength criterion, failure takes
place when the calculated siress equals the ultimate tensile strength. In the mean time, the failure
criterion based on the critical energy release rate is considered to be constant during the crack
propagation. The nominal strength, of a loaded element, obtained from the strength criterion
is constant, regardless of the structural size. The LEFM classical solution provides an inverse
proportionality between the calculated stress at failure and the structural size. Bazant argued
that when the structural size is relative by small failure takes place according to the strength
criterion theory, On the other hand, when the structural size is relative by large, the obtained
nominal strength is rather in accordance with that derived from ELFM theory. This means that
the size-effect curve of the nominal strength approaches a straight inclined line {downward slope
of — 1/2 in the double-loganthmlc coordinates) derived from the LEFM solution as the structural
size is rather large.

Formally, according to Bazant, the obtained curve describing the size effect of the nominal
strength in nonlinear fracture materials has a gradual transitions from a horizontal line determined
from the strength theory to an inclined line derived from the strain energy release rate criterion
in LEFM as in Fig.1. Many previous investigators have confirmed this curve by the test data or
pumerically (see [1, 2, 7 and 14]}. Theoretically, Bazant, [2] proposed the following equation:
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where f, i8 the nominal stress at failure, f; - ultimate tensile strength, d - beam depth, d; -
width of the fracture process zone, 8 and Ay - empirical coefficients determined from specimens
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of the similar structural configuration, but differing only in the size. Therefore § and o (they
may be replaced by A = Agd,) depend on the structural configuration, the loading condition and,
especially, the material fracture properties. Eq (1.1) has been considered to be the size-effect law
in the nonlinear fracture mechanics. Bazant, [2] attempted to demonstrate the authenticity of
Eq (1.1) with the help of the previous test data sets. However it has been seen that (see Ref.
[2]) the dispersion is too big. It was explained by Bazant that the test data sets derived from

- different laboratories were not a.vallable for the demonstra.tlon It may be true due to the followu;g e

set-backs: -

1) The empirical coefficients in Eq. (1.1) depend on many factors, eSpecially on the material’s
fracture properties. These coefficients are not universal for all concrete compositions. This means
that the size-effect law may be only described for loaded elements possessing the sameé material
fracture properties. The data used by Bazant for checking the size-effect law do not possess the
same fracture properties (although the authors have attempted to transform them to the non-
dimension). The size-effect law is universal for concrete only if the functional correlations between
the empirical coefficients and the intrinsic fracture properties are determined.

2) This relates to an assumption that as the structural size is relatively large the size effect

of the nominal strength behaves similar to the solution obtained from the LEFM theory (o, =
const/ pt/ 2). This limiting size, however, depends very much on the fracture properties of materials.
On the other hand, the expression o, = const/ b1/2 is only true when there is no plastic deformation
zone close to the crack tip (it relates to an assumption of K, = constant). But for most engineering
materials, as the size tends to infinity, the nonlinear fracture zone forms, always, around the crack
tip (although its size is small). This means that the downward slope of tangents of the size-
effect curve (in double-logarithmic coordinates) seems to be larger than —1/2 for all structures.
Some expressions obtained using the asymptotic analysis and the Weibull’s statistical theory were
given by Bazant later, [3] and other investigators {Duda and Kénig, [7], Li and Llang, [10]) have
confirmed this observation.
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Fig. 1. Assumed size:effoct curve on concrete

It i3, however, necessary to emphasize that the essential lack of the size-effect law proposed by
‘Bagant, [2] is due to the unknown dependence of the empirical coe fficients on the fracture properties
of materials as many investigators have mentioned later. In order to derive the general size-effect
law for concrete this dependence must be determined. Building up a constitutive relationship
between the size effect of the nominal strength and the fracture properties of concrete is the
resgential topic of thls text The methodology used is numerical analysis combined with dimensional
-analysis, - ; - o
A new term known as the shape index (Sp) of the stress - crack opemng curve (o — w curve)
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is briefly described and is used in following the proposed methods of approach. The shape index -
Sr proposed by Tran Tu and Kasperkiewicz, {14] is one of the parameters describing the ¢ — w
curve and determined from the intrinsic fracture properties of materials:

1
Sr = T —-O[f(as)ld:c

(1.2)

w

y=f(x), y=%: ..'E=;:

where o is the tensile stress in the fracture process zone, f; - ultimate tensile strength, w, - critical
crack opening displacement, G - fracture energy. For elastic deformation materials St tends to
infinity, for materials with the plastic deformation taking place close to the crack tip, Sr is equal
to 1, and Sr = 0.5 when the ¢ — w curve is mono-straight.

2, GENERAL SIZE-EFFECT LAW

The size-effect law in concrete structures can be explained more clearly by analysing. the
existence of the fracture process zone in front of the crack tip. Let us consider the crack plate
under mode-I loading. Within the elastic region, the stress along the axis y = 0 is given by:

. K;
Tyy 2ar (2.1)

The fracture process zone (FPZ) with the length r, in front of a crack tip is replaced by a
fictitious crack and the action of the cohesive stress o{z), (Fig. 2). The equlhbrmm condition along
the axis y = 0 determines that

Fu Fy

\/ﬂ;ar—]a(x)dx= ryg(X b, 8n, Sr) fe (2.2)

where g(A, b, €on, S1) = Sl/2 is obtained from the average integral principle, that is a function of

the structural configuration (A), of the structural size (b) and of the material fracture properties

{(£c1, ST), ST ~ shape index of the ¢ ~ w curve and £, - characteristic length of materials. After

integration, the FPZ length ry is determined as follows
2K?

- ffS

On the other hand when FPZ is not very large the stress intensity factor may be calculated

as follows
Kr = f@)ooy/alatr) (2.4)

where f(a) is a configuration factor depending on the crack length to plate width ratio. Combining
Eqs (2.3) and (2.4), the stress intensity factor is determined as

(23)

2
K= e e
1= 25

From Griffith’s postulate, [11], a crack becomes unstable and begins to propagate when K
is equal to Ky, o is then considered as f,, (it is a.lways assumed for the structures that the
crack length is rather small compared to the structural size or the structure is large enough). The
following equation is derived:

, 1-He) |
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F 1. #.. Stress distribution and the fracture process ‘sone in front of a crack tip

After smtable changes and mampulat:ons we derive the expression similar to that obta.med
) by Bagant:
fa -
2=l )
where A and B - coeflicieniz depending on the struciural conﬁguratlon The function g(\, b Ech, Sr).
is determined from Eq. (2.2) having the following properties:
i) Increasing with the increase of £, and Sr.

-1/3 (27)

il) Decreasing with increasing structural size and slender (it is a ratio of structural size normal -

to the crack growing direction to the remaining structural size). -
We can consider Eq. (2.7) under the alternative form depending on the way of choosmg the
functxon g()\ b, teh, Sr) by the dimensional analytical method:

boofr (&) kel e

where d b and « are coefficients dependent on the stiuctural configuration only. Powers ny, ny

and n3 in Eq. {2.8) are determmed by combmmg the dimensional analysm and the best fit of the

test . or numerical reaults.

Eq. (2.8) is considered to be the general constxtutwe rela.t:onshlp between size-effect of the
nomma.l stresses at failure and the fracture propert:es of copcrete and similar materials. From Eq.
(2.8), as well as from Eq. (2.7), e can see that the size effect of the nominal strength of structures
" made of cohesive materials as concrete is substantial.

3. SIZE EFFECT FOR BEAMS IN BENDING

. The numerical anélysls of fracture in concrete notched beams'in bending (cither beams in
three-point bending or beams in four-point bending) is carried out here by employing the fictitious
crack model, {8] and the finite element method. It is, however, very important for mvestzgatmg'
the crack propagation using the fictitious crack model is the creation of the cohesive forces in
accordance with the different cases of the o — w relationship. The o — w relation proposed by Tran
'I‘u and Kasperknewxcz, [14] descnbed by the following equation: .

"?I_=(1-_A)(1wx'=)+A{1..z)1ﬂ= . (3
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where coefficient A = 0.5, k depends only on the shape index Sr, {14], the others are indicated
above.

The numerical approach with the different shape index of the o — w curve is presented in brief
as follows:

1) Calculating the external load and the deflection of a beam in accordance with the LEFM.
The criterion of the siress intensity factor is used.

2) Calculating the crack extension, with first assuming the increment of the fictitious crack
‘length to be Ag. The crack extension takes place when the maximum stress at the crack tip equals
the tensile strength. The cohesive forces are calculated by steps in accordance with the o — w
relation and they are verified so closely that the deviations after two neighboring iterative steps
are not greater than 0.01 [N]. The calculation is ended when the total length of the real crack and
fictitious crack reaches, approximately, the length of the beam ligament.

The influence of the different shapes of the o — w curve on the load-deflection dla.grams for
a beam in three-point bending was presented in [14]. It proved that the obtained maximum load
from numerical fracture analysis will not be correct if the influence of the shape of the ¢ —w curve
is neglected.

The coefficients in (2.8} are determined from the fracture analysis of three hundreds beams
with the depth varied from 10 to 1000 [mm), a/b = 0.20 + 0.50, the material fracture properties
varied in a broad range as G = 10 — 450[N/m}, f; = 2 +5 [MPa], £ = 20000 + 45000 [MPs]
and St = 0.1+ 1. Based on the best fit of calculated data the powers ny; = 1.25, n; = 0.03
are obtained, the power n; represents the influence of the beam slender on the nominal strength
through the crack surface displacement. By the well known equation in LEFM, n; equal to 1 is
allowed. Therefore Eq (2.8) becomes:

%'. = an[d, + W] "7 (3.2)
i . E

S lpbenyt® 1 _SM _ GrE - Gr Iy
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where M is the bendmg moment, the coeﬂiclents Gy, bp and dy, depend only on the notched depth
given in Table 1 together with the statistical factors estimating the functional correlation.

Table 1

ao/b a, [ dy. 3y 40 ap

.20 2.1677 0.4214  0.1937 0.0586 0.0143 0.00163
0.30 2.25655 0.4284 0.2227 0.0559 0.0136  0.00157
0.40 2.3768 0.4298 - 0.2343 0.0540 0.0130 0.00152
0.50  2.5574 0.4316 0.2392 0.0606 0.0145 0.00171 -

Eq. (3.2) with the coefficients preserted in Table 1 is applied for all beams in bending with
different slender and depths. Fig.3 shows the size effect of the nominal strength of beams in
bending with the different notched length. To check Eq. (3.2) a series previous data obtained
from the test and calculation are presented together with the diagrams representing Eq. (3.2), in

- this case W changes from 0.01 to 2.5, It is plotted in Fig.4 in the semi-logarithmic coordinates.
It proves the good agreement between Eq. (3.2) with the data sets in references, [9, 12, 13). Tt is
very interesting to note that (3.2) is also true for beams made of metals that the nominal stress
at failure is supposed regardless of the beam size. Table 2 shows the results calculated for beams
made of metals in three-point bendmg according to Bucci et al., [6], Zhang and Lin, [15] and those
calculated from (3.2).
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Fig. 4. Checking the size effect law by test and calculation data

Table 2 (for A < 4)

VV ao/'b —- fn/fh [19] l fn-/fh [Gl . fn/fh Eq(32)

0.20 1774 2184 1.957

0.30 ' 1.909 2.184 2,022
040 2020 = 2.184 2081

0.50 o o2106 - 2384 2.165

4. SOME INTERPRETATIONS OF THE PROPOSED SIZE EFFECT LAW

The following pregentation is the mterpret.a.tlons of Eq (3 2): It proves the role of the mtrmsm
material fracture: properties and the notched depth on the size eﬁ'ect law. . :
Notched sensitivity . .
Flg 8§ shows the size effect la.w for the dliferent notched depth We can see that the notched

45




sensitivity is rather strong. The larger the notched sensitivity of the nominal strength the smaller
the beam size is.
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F 1. 5. Inﬂuence of the notched depth on the suse eﬁ'ect uf the nomma.l atrength

Role of material fracture propertles

The role of the material fracture properties in the sme-eﬂ'ect law are dealt with in this chapter
This includes the change of the characteristic length and the shape index. We can clearly see this
influence in Fig. 3, in which the change of £, and St are covered by the change of the parameter
W. In Fig.6 plotted is the influence of the characteristic length (with plain concreteit is about
100-400 and may even reach 1000), for a shape index Sy of 0.3. The influence of the shape index
Sr is presented in F1g 6. These figures are seIf explana.lsory on the role of the intrinsic fracture
properhes in the sxze—eﬂ'ect law. E
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. F;g. 6. The role ef Len in the sige effect l_aw- .

5 CONCLUSION

1) The size eﬂ'ect of the nommal strength of structures made of concrete llke ma.tenal is
explained more clearly than before. It is due to the appearance of Iarge fra..ture prccess sone in
front of the crack tip. - : :
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. F1g. T The role of Sy in the size effect law

_ 2) The size-effect law proposed in this text is a general law for beams in bending made of
concrete and similar materials. For other configuration structures the change may be only in the
constant coefficients and powers in Eq. (2 8) or it is employed directly from the genera.l equation
(2.7).
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VAI TRO CUA.CAC TINH CHAT PHA HUY Vf\T LIEU TRONG QUY LUAT
HIEU ONG KICH THUGC cﬁA KET CAU BE TONG :

Trong bij. ba.o, quy it hi¢u dmg kich thu'o-c tdng qua.t duroc th&n}n 13p trén co sé& pha.n tich
pha hiy p]u tuyén cda két cdu bing vt liéu bé téng va cée vit lidy composite twong ty. Trong
cong thic tdng quit ndy, vai trd cda cc tinh chdt phé hiy cla vat lign, dic biét 13 hé 3 hinh
dang cda nhinh bién dang & ddn (Softening branch) di dwgc thé hién, Diy 13 mét thanh tyu mé&i

hign nay trong linh veng co hoc phé. hiy cia vit ligu composite. Bing phwong phip sdtic gid da

4p dung nghién céru cho dim chiu udn cb tao v&t nirt trwdce, vt lidu 13 bé t6ng hode chc loai ché
tao tir vita xi ming. Vai trd cda cdc tinh chit ph4 hiy vit liéu di dwoc phin tich v minh chl'rng
bing d5 thi. Nhiing s8 li¢u thwe nghzem cla cde thc gid & che phong th{ nghiém trén thé g1cr1 da
xéc nhin sy ding din cia cdng thic tong qudt dtmc dwara 6’ bai bé.o niy.

- RANDOM OSCILLATION IN SYSTEMS SUBJECT TO

(tiép theo tra.ng 7)

DAO DONG NGAU NHIEN TRONG HE CHIU KicH DONG
cta MOT L&P ON MAU

Trong bii bio phwong phédp trung binh héa ngiu nhién cip cao dwoc phii tridn d€ nghién
ciu sy kich déng cia mét 16p 8o miu cé b loc twong tng chi ¢ cdc gid tri riéng im hiru han
va khic nhau. Di thu du'gc x4p xi gin ding bic 2 cho him m4t d§ xic sudt clda hé Duffing chiu
kich déng cda qué trinh ngiu nhién twong quan mi. Cic tinh todn 28 &3 dwoc tién hanh nhim
xem xét s phu thude cda binh phwong trung bmh clia bién d8 theo tham s8 glé.l tin cia hwc kich
dong. . .
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