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NON-LINEARITIES IN A QUASI-LINEAR SYSTEM
SUBJECTED TO EXTERNAL AND PARAMETRIC
EXCITATIONS OF DIFFERENT ORDERS

NGUYEN VAN DINH
Institute of Mechanics, NCNST

In [1], using the multiple scale method, A. N. Nayfeh has studied the interaction of fandamental
parametric resonance with subharmonic resonance. Essentially, the system considered belongs to
the class of oscillating ones, subjected simulta.:neous]y to two excitations {external and parametric}
of different orders of smallness (= and &2, respectively). It has been shown that, depending on the
dephase between twao excitations the system may be enhanced or extingunished.

Below, to obtain some more informations about this phenomenon, we shall plot the resonance
curve of the combined oscillation. The asymptotic method [2] will be used, the roles of quadratic
and cubic non-lmea.ntles will be analysed. .

§1. SYSTEM UNDER CONSIDERATiON AND ITS AVERAGED EQUATION
Let us consider an oseillaﬁing system described by the differential equation:
£+ wfz =e{fz* + qcos 2wt} + & { ~ hi + Az — 42° + 2pz cos 2{wt + o) } (1.1)

where: z - an oscillatory variable; ¢ > 0 - a small parameter; 8, v - coefficients of quadratic and
cubic non-linearities, respectively; ¢ > 0,-2p > 0 and 2w, ¢ {0 £ o < 7} - intensities, common
frequency and dephase between the external and parametric excitations, respectively, A = (w?—1)
- the detuning parameter (1 - the natural frequency). Using the asymptotic method, in the second
approximation, the solution of (1.1) will be found in the form:

z = acostp + eu,{a,0,9) + e*uz(a,b, ¥) & (1.2)
a=cA(a,b) + &% Az(a,8)
6 = eB1(a,0) + 6°Ba(c,8), $=wt+8

where: a, ¢ - slowly varying amplitude and dephase of the oscillatory regime; uy, uz (A, By, Az,
By) - unknown functions of a, 6, ¢(a, §) which are periodic relative to 8, 4 (#) with period 2.

Introducing (1.2) into (1.1}, using (1.3} comparing the terms of like powers of & then, those of
same harmonics of ¥, we obtain:

(13)

Al = Bl = 0 ‘ :
1 yBa®  Ba® +2qcos2f qsm20 ) (1.4)
ul"‘;.'z_{_g—' ————-6——-——cos2v,b- 3 sin 21,0}
4= —;—z-a{hw + (gcos 20 — E’?g-) sin 26 — (psin 27) cos28}
| 3 - W p (1.5)
i gelfo- (-5 2
a 70 a{ A 1 ﬁwz) + (psin 20} sin 26+ (p cos 20 3w2) cos 26}
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§2. PURE FORCED OSCILLATION

The equations (1.5) admit the trivial solution a = 0, corresponding to the pure forced oscilla-

tion:
T =eup = -—%{ cos 21,!; cos 20 + sin 29 sin 26} = —i-; cos 2wi (2.1)
The stability study of t.h1s quasx equlhbnum regxme can be based on the foliowmg varlatlona,l' )

" system [3]: -

a= —ez—a{hu+ (pcosza~ —ﬁi) sin 28 — (psin 20} coszﬁ} (2.2a)
2w Juw? ' ’

0= —Ei'{A+(psin2a)sin29+ (pcos‘Za— _,Qg_) cos‘Zﬂ} : (2.2b} i

2w , 3w? e

Let us write {2.2b) as

~A = (psin20)sin 26 + (p cos 20 — %’5) cos 24 | (2.3a}
and, by X, we denote:

. _ . B . Lo : . :

X= (p cos 20 — 5-(;5) sin 20 — (p sin 20) cos 20 (2.3b).

From (2.3a}, (2.3b), it is easy to deduce:

2] .
X::t\/(pcos%— ™ 2) + (psin20)? — A? (2.4)
The Stability conditions are of the form: -
Re{hwﬂ: \/(pcos%'— 3£%—) +(psm20) Az} > 0. (2.5)
Since h > 0, w = 1 only the second inequality (sugn —) is retained:
hw > \/(p'cos2d - ﬁg-—) +(p sin 20)2 — A? (2.6a)
3w? . ‘
or Bq\2
2 _PeN“. . 2 _ 12,2
Al > (p cos 20 3w2) # (psin 20)® - héw (2.8b)

§3. COMBINED OSCILLATION

More interesting stationary regime is the combined oscillation of amplitude ag and dephase

flo, determined from the equation:

(p cos 20 — i—’;) sin 26 — (psin 20) cos 26 = —hao - ‘
o ' (3.1)
Bq [ 8y Sﬁ"’) ]
(pstJ) gin 20 + (pcos 20 303 ) 0820 = (4. ™y -A
After eliminating 4, we obtain the resonance curve
. [(31 5f° 2 2 BINZ g,
W = [(—«f—ﬁwz) A] + h*w? -—(pcosZcr— ™ 2) —-p°sin“2¢ =0 (3.2)
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To study the stability of this regime, we introduce the variations fa=aqa~ag, 66 =8~ 4
m, establish the variational equations: '

i = -f‘ﬁ{(s—” 5’-’;) - A}60

23 45526 : )
j= 2 (27 _ 250 — 2]
8= (- 25 )ata~ehso.
The characteristic equation of (3.3) is
4 3 - 2. :
2, g, S ((3_ 5B 2 V(315 a
P +sh"+w2{_(4 a7)” A} (T - 6w2) 0 (8-4)

Since A > 0, the stability condikion is given by the inequality:
(-85 -al G- )

aw
9a?

Remark. As it has been shown in [4], we must examine also the cntlcal case where the
tterminant (of the algebraic equat.mn (3.1))

, in compact form:
' >0 -7 - {3.8)

pcog 20 — —= - —psinle :
D= ( o 3w’) . 84 (pcosza—fqz) +plsin® 20 =0 (3.1)
' psin 2o . (pcosza—«a—wg) ‘ .

However, form (3.7}, we deduce o= 0, w/2 w? = fq/ 3p 36 that the algebraic equa.tlons (3 1)
imit no solution

§4. ROLE OF QUADRATIC AND CUBIC NON-LINEARITIES

The relationship (3.2} can be wnt.ten as:

(.‘9’41 - "65'%)“2 =A%+ \/(pcos2a' - E%— + (psin 20)2 — h2w? (4.1)

For simplicity, we suppose that g > 0,9>0. Obviously, the resonance curve may exists only

Z = (ﬁcode—ﬁ%) +p? sm 20’ R3Z >0
For ﬂlustr-%xtlon;‘let us fix h? *-.'000006, B = 0.1; p = 0.012; ¢ = 0.12. In figure 1, (a)

epresents the straight line 23 = h%w? and (b} (c) (d) (e} {f) (g} represent the curves Z; =
pcos 20 — %%—) + p?sin® 20 corrasponding to o = 0, 7/12, x/6, /3, /2, 2x/3 respectively if
r = 0, the equation z = 0 a.dmxts three solutlons w? < w3 < w? and the resonance curve may
:xists when z > 0 i.e. if w? < wf or w2 < w? < wd. For each other chosen values o, we have only
yie sokution & and z 2 0. :fw"‘ <"’2

However, the existence of the resonance curve depends also and notably on the ra.l:;o between.

she quadratic non-hneanty and the cubic one, more exactly, on the value w3 ,g / I vams]ung_
39 5p%

the coefficient k{w?) = i

2%

g i
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Let us denote the right-hand side of (4.1) by:

y=w2—1i\/(pc0320—

Assume that the graphic (a) of ¥, exists

in the interval I(w} < w? < wj) and is of the,

shape given in ﬁgure 2.

- ¥ w? < w?, then k{w?) > 0 in the in-
terval I, therefore the resonance curve a? =
y/ k{w?) i 1s glven by the curve of sha.pe (b:)

- K w? > w2, then k(w?) < 0 in the inter-
val I, therefore the resonance curve a? is given
by the curve of sha.pe (bz)

- - fw? < w? < w2, the resonance curve

consists of two branches (bs) and (b}, admit-

ting as asymptote the ordinate lme of a.bsc1ssa :

w2 2

= w?
In rea.hty, depending on the chosen order
of smallness_, the acceptable parts of the reso-
nance curve are nearly straight lines.
Bome typical resonance curve are given in
figures 3, 4. )
It is clearly that the soft-hardness of the
oscillating system depends on w?. ¥ w? is

small enough, the resonance curve leans to the

right, the system belongs to hard type; on the.

contrary, if w? is large enough, the resonance
curve leans to the left, the system belongs to
soft-type; if w? is in the neighbourhood of 1,

one.

the system is neutrahzed it becomes a lmea.r _
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Fig. 8 Fig. 4
h% = 0.0006, p = 0.012, ¢ = 0,12, A% = 0.0001, p = 0.012, ¢ = 0, 12,
f=01oc=10 _ #=0.1,0=0785
(a): 7+ =10.005 (b): v =0.04 (c): v =0.01 {a): 4 =10.005 (b): y=0.04 (c): v=0.01
CONCLUSION

We have examined a guasi-linear oscillating system subjected simultaneously to external exci-
tation of order ¢ in subharmonic resonance and parametric excitation of order & in fundamental
resonance. It has been found if the quadratic and cubic non-linearities are of order ¢ and 2,
respectively, the soft-hardness of the system depends on both these non-linearities; in particular
case, the system examined can be neutralised.

This publication is completed with financial support from the National Basic Research program
in N. a.tlonal Sciences.
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PHI TUYEN TRONG HE A TUYEN CHIU KicH DONG NGOAI
, VA THONG SO & CAP KHAC NHAU .
Di khio s:it hé dao d6ng 4 tuyén chiu kich dn‘;}ng ngoé.i cap-e c‘{mg huwéng 1/2 vk kich ddng
thong s8 cdp 2 cdng hm’mg chinh. Nhin thiy rang néu céc yéu t8 phi tuyén din hdi bic hai va

bic ba twong u-ng & cip £ vi ¢ thi tinh cing - mem cﬂa hé s& phy thuoc vao ci hai yéu to dé;
trudmg hcp riéng, hé ¢6 thé bi trung hoa.
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