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RANDOM OSCILLATION IN SYSTEMS SUBJECT TO 
THE EXCITATION OF A CLASS OF COLOURED NOISES 

NGUYEN DONG ANH 
Institute of Mechanics, Ha Noi 

SUMMARY. In the paper the higher order stochastic averaging method is developed .to a class of 

coloured noise excitations when the corresponding forming filter has only finite negative eigenva

lues. The second approximate probability density function to the Duffing system subject to the 

exponentially correlated process is obtained. Numerical application is carried out to investigate the 

independence of mean square amp1itude on the bandwidth parameter 

L INTRODUCTION 

Nonlinear ra.ndom vibrations in dynamical systems subjected to the excitation of a white noise 
have often been investigated by mariy authors. It is wellknown that the white noise process has a 
Constant spectral density function and thus does not exits in the practice. Mean white, the random 
processes with linear-fractional spectral density functions of the frequency describe well many real 
environmental loadings. These processes contain an important class of coloured noises which can 
be interpreted as the result of the passage of white noises through a certain linear system with 
constant parameters, called a forming filter. In the paper the excitation of a class of coloured 
noises on a single degree of freedom system is investigated. 

2. A TYPE OF FORMING FILTER 

Consider a mechanical system whose motion is described in the form 

ii + w2 o: = ef(o:, :i:) + .,je q(t). (2.1) 

The excitation q(x) is a normal stationary random process, the result of the passage of a white 
noise through the linear forming filter 

d"' n--1 .. d8 
Lq(t) = dtn q(t) + L "• dt• q(t) = b>(t) 

8=0 

(2.2) 

where a,. b = const, >(t) in a white noise of unit intensity. In Eq. (2.1), w is the naturalfrequency, 
e is a positive small parameter, f(o:, :i:) is a nonlinear function of displacement and velocity. The 
spectral density of the process q(t) can be easy obtained from (2.2) 

1 b2 

s.(w) = 2d(iw)t(-iw) (2.3) 

where 
n-1 

i(>.) = ).n +La,>.' (2.4) 
s=O 
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Consider a case when the linear filter (2.2) has only finite negative eigenvalue, i.e., all the 
roots ).1 of the characteristic equation 

l(.i) = 0 

are distinct, .real, negative, and 
J.il > e 

Eliminating now q(t) from (2.1}, (2.2} one obtains 

L(ii + w2z) = eLf(z, :i;) + vfe b~(t) 

Forming the characteristic equation of the generating linear· equation (e = 0) 

(>.' + w2 )t(.ij = 0 

one gets the general ·solution in the form 

n 

x(tJ = E c,.~ .. +a co• <p, <p = wt + 8 .· 
i=l 

Thus, according to the averaging method we make the replacement [4] 

d'z a• . . 
dt' = a(t) at• cos(vt + 8(t)) k = 0, 1, ... , n + 1 

where a(t), 8(t) are Markov diffusion processes satisfying the equations 

a= eu1 (a, 8} + ,fev1(a, 8)dt) 

0 = eu2(a, 8) +vev2(a, 8}dt) 

or turning to the variable a, rp one gets 

a= eu,(a, 'P) + ,fev,(a, 'P)~(t) 

<{> = w +_eu2 (a, <p) + ,fev2 (a, <p)~(t) 

where one has 

. . ·. 1 ~ . 
u1 (a,<p) = --[Lf(z,:i:)J0 sin(<p+<p.) + --2-

2 
cos2(<p+ <p;) 

wr 2aw-r 

u2(a, <p) = - -
1
-[Lf(z, :i:)Jo cos(<p +'Po) - 2 b: 2 cos(<p + <p.) sin(<p + <p.) 

~• . awr · 

v,(a,<p) = ~sin(<p+<p.), v2 (a,<p) = -
6
-cos(<p+<p.) 

wr · awr 

(2.5} 

(2.6) 

(2.7} 

(2.8) 

(2.9) 

(2.10} 

(2.11} 

(2.12} 

dx' a• 
[Lf(x,:i;)Jo =Lf(x,:i:)dtk = aatk cos<p (2.13) 

n n 

<p. = E <p,, r =IT r; 
1=1 1=1 

r; = · lx~ + w2 , sincp; = ~, V • r; 
n 

D; = II (Am- A;}(A;- A,) 
m>i>" 

A; 
coscp; = -

r; 

2 



For system (2.12), the corresponding Fokker-Planck equation for stationary probability density 
function W(a,<p) of amplitude and phase can be formed as follows 

where the operator L 1 is defined as 

aw 
w- = -eL,(W) 

a'P 
(2.14) 

L1(W) = aa (u1W)-! aa•. (11~W) + .i.. [u.w- ~(111112W)- !a. a (11~w)] (2.15) 
a 2 a · a<p . aa 2 <p 

The sol;,_tion W(a,<p) of Eq. (2.14) is to be obtained in the form [5] 

00 

W(",'P) = I>'w,(a,<p) 
i=O 

Substituting (2.16) into (2.14) and comparing the coefficients of like powers of • gives 

awo 
w--=0 
. a'P 

·aw'+l . · . · w--a;;- = -L(W;), • = O, 1, 2, ... 

Since the functions W;(a, <p) must be periodic ones of variable <p, one gets from (2.18) 

(L;(W;)) = 0 

where ( ) is defined as the averaging operator 

2" 

(.) = 2~ I (.)d<p 
0 

Thus, one gets from (2.17) and (2.19) fori = 0 

We expand into a series of Fourier 

m 

Wo = Wo(a) 

(L(Wo(a))) = 0 

~~;(a, <p) = L ( S;;(a) sin 2j<p + C;;(a) cos 2j<p) 
j=O 

m 

v,(a,<p)llk(a, 'P) = L(Slk(a) sin 2j<p + Clk;(a) cos 2j<p), i,t, k = 1, 2 
i=O 

Substituting (2.22) into (2.15) yield 

[ a 1 a2 
] . . a [ a + aa (c.,.Wo- 2 aa• (Cu;Wo) cos 2J<p + a'P (S23W0 - aa (S12;Wo) 

+ iWoC22;) sin 2j<p + (C2;Wo- :a (C12;W0)- JWoS22;) cos2f<p]} 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

{2.21) 

(2.22) . 

(2.23) 



Substituting (2.23) into (2.21) gives the equation for Wo(a) 

a 1 a• 
.aa (CtoWo)- 2 aa• (CuoWo) = 0 

After finding W0 (a) and substituting it into (2.18) fori= 0 one gets 

Wt(a, 'P) =-~I L(Wo)d<p 

or noting (2.23) 

m 

Wt(a,<p) = Wo(a)W10 (a) + L(W;,(ahin2j<p+ W;c(a)cos2j<p) (2.26) 
i=l 

where it is denoted 

(2.27) 

The arbitrary integration function W10(a) iti (2.26) will be defined by considering (2.18) and 
(2.19) for the case i = 1. 

aw2 w- =-L(Wt) 
a<p 

(L(W.)) = o 
Substituting {2.26) into (2.29) yields the differential equation for W10(a) 

Finally, using (2.24) one obtains the explicit form of Ww(a) 

m I 1 · · 1a 
Wto(at= E { Cto(a)Wo(a) [st;(a)W;,(a) + Ct;(a)W;.(a)- 2 aa (Su;"(a)W;. (a) 

(2.28) 

(2.29) 

+ Cu;(a)W;.(a))] da} (2.31) 

where the coefficients Ctk(a), Slk(a), Ctkjo Stkj, Wo(a), W;,(a), W;.(a) are found from (2.22), 
(2.24) and {2.27}, respectively. Thus, finally according to th~ averaging procedure the second 
approxhnate solution to the FP equation (2.14) is defined as 

W(a, 'P) = Wo(a) + e[Wo(a)Wto(a) + Wu(a, 'P)] (2.32) 

So, it is important that the second approxhnate solution can be obtained in explicit form as it is 
shown from (2.26), (2.27) and (2.31). 

3. APPLICATION TO THE EXPONENTIALLY CORRELATED PROCESS 

Let q(t) be an exponentially correlated stationary random process, with following spectral 
density and correlation function 
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{3.1) 

The corresponding forming filter is 

Lq = q(t) + aq(t) = 61 vfZc;l(t) (3.2) 

According to the procedure described the solution of the system {2.1), {3.2) is defined in the 
form 

x(t) = acosp, X= -awsincp, 
.. 2 x= -aw cosrp {3.3) 

For the case (3.2) one has, see {2.13) 

w 
n= 1, >. = -a, sin Pt = _ 1 2 2 , 

va +w 
tp* = /fll, r = r1 = V'a-:-2 -+-w72 {3.4) 

Lf= ~+a! 

The amplitude and phase differential equations are described by {2.12) where 

{3.5) 

Further, the solution to the corresponding FP equation can be performed as described above 

4. DUFFING OSCILLATOR 

It is wellknown that the exact solution of the Dufling oscillator subject to coloured noise it not 
available up to now. So, the approxirriate solution~ are to be interested. So, consider the Duffi.ng 
system 

where q(t) is the exponentially correlated random process (3.1). For this ca.se, one gets 

df f 2h" 2 h. 3 2 • :l - + Ct = - X - Q! X - /X X - 0:/X 
dt 

Substituting (3.3), (3.4), {4.2} into {3.5) gives 

2 

u;(a,<p) = L{S;;(a)sin2j<p+ G;;(a)cos2j<p) 
i=O 

l 

v,(a, <p)vk(a, <p) = L(Slk;(a) sin 2j<p + Glk;(a) cos 2j<p) 
i=O 
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(4.1) 

(4.2) 

{4.3) 



where: 

Substituting 0 10, Cuo from (4.4) into (2.24) yields (C = canst) 

{ 
r2w2ha2} 

"Wo(a) = Caexp - (lil"'l 

Further, substituting (4.5), (4.4) into (2.27) one gets 

W,. =Wo(a)G~a•), 

W2, = W0(a)G~a4), 

cl2o(a) = 0, • 

li2 a 
C220(a) = .2 '. 2 , 

a w r 

Using (2.31) for m = 2 and noting (4.4), (4.6) after some calculationl! one has 

. 3 [ (. . hw') 6 . ] 
Wto(a) = -

16
1ilr2 1w2a6 + 4ahw2 + ha3 

---;:;-' a•- r21if(w2 - a 2)a2 

(4.4) 

(4.5) 

(4 .. 6) 

(4.7) 

Thus, the second approximate probability density function of amplitude and phase to the 
Puffing system ( 4.1) is found as · · 

{ 
-(a

2 
+w

2
)w

2
ha

2 
}{ 3'je [ ( . · hw') W(a, <p) = Caexp 

02 
1-

52
( 2 . 2 ) 1w2 a6 + 4ahw2 + ha3

- -· a4 

1 "' 16 1 "' +w . . "' 
65[("" -w2)a2

] qhw 4 • ·[ 3e1 2 e1h(a2
- 3w2) •] 2 + ( 2 2 ) +-52 a sm2<p.- ( 2 ")a + <2 a cos <p "'+"' 2 1 2C<+w .4o1 ... 

qhw 4 • [ 3e'j 2 3e1h(0<2- 3w2) •] } 
+ 25[ a sm4<p- 4("'2 +w2)a + 165l"' .a· cos4<p . (4.8) 
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In the limit case when the coloured noise q(t) tends to an white noise oe(t), i.e. 

25' 
-

1 -~o 02 = canst 
a 

the solution (4.8) tends to the following expression 

.{ 2w
2

ha
2

} [ qh ] W(a,<p)=Caexp -
62 

1-
852

a 4 (3+4cos2<p+cos4<p) 

which is obtained in [5]. 

Table 1. Mean- square amplitude of Dulling oscillatior to coloured 
noise for w = 1; 7 = 0.1; h = l; e = 0.1; crt = 20 

a (a•) (a2)o 

2.0 7.134 8.148 
4.9 4.500 4.719 
6.9 3.156 3.246 
8.0 2.143 2;462 

10.0 1.950 1.981 

(4.9) 

(4.10) 

In Tab. 1 the mean - square amplitudes of Dulling oscillator subject to coloured noise (4.1) 
are given when the bandwidth parameter a varies. It is seen that the mean - square amplit11de 
decreases when a: increases from 2.0 to 10.0, and for a = 10.0 the mean - square amplitude is 
closed to the one (value 1.944) of the corresponding Dulling oscillator subject to the white noise 
with intensity equal to 0.4. In Tab. 1 the mean - square amplitude of corresponding linear system 
(a2}o, (y = 0), is also given. It is shown that in the case of coloured noise the effect of cubic 
non-linearity can be investigated by using higher order averaging procedure proposed. 

5. CONCLUSION 

The averaging lllethod is an useful tool for investigation both deterministic and stochastic 
quasilinear system. In the stochastic problems, however, the method has often been developed 
only for white noise excitations. The results obtained show that the higher order averaging method 
can be Successfully extended to the cases of coloured noise excitation. 
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