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" RANDOM OSCILLATION IN SYSTEMS SUBJECT TO
THE EXCITATION OF A CLASS OF COLOURED NOISES

NGUYEN DONG ANH
Institute of Mechanics, Ha Noi

SUMMARY. In the paper the higher order stochastic averaging method is developed to a class of
coloured noise excitations when the corres-ponding forming filter has only finite negative eigenva-
lues. The second approximate probability density function to the Duffing system subject to the
exponentially correlated process is abtained. Numerical application is carried out to investigate the
independence of mean square amplitude on the bandwidth parameter

1. INTRODUCTION

Nonlinear random vibrations in dynamical systems subjected to the excitation of a white noise
have often been investigated by many authors. It is wellknown that the white noise process has a
constant spectral density function and thus does not exits in the practice. Mean white, the random

processes with linear-fractional spectral density functions of the frequency describe well many real’

environmental loadings. These processes contain an important class of coloured noises which can
be interpreted as the result of the passage of white noiges through a certain linear system with
constant parameters, called a forming filter. In the paper the excitation of a class of coloured
noises on a single degree of freedom system is investigated.

2. ATYPE OF FORMING FILTER
Consider a mechanical system whose motion is described in the form

E+wis=ef(x, i) +\/Eq(t). C o (2.1)

The excitation ¢{z) is a normal st,anona,ry random process the result of the passage of a white
© noise through the linear formmg filter

L) = el + ¥ a,dt, at) = be(e) (22)

#=0

where ,, b = const, ¢(t) in a white noise of unit intensity. In Eq. (2.1), w is the natural frequency,
€ i3 ‘a positive small parameter, f(z, ) is 2 nonlinear function of displacement and velocity. The
spectral density of the process g(t) can be easy obtained from (2.2)

2
Sefw) = é};m (2.3)
where -
A=A+ e . ' (2.4)

=0



Consider a case when the linear filter (2.2) has only finite negative eigenvalue, i.e., all the

roots X; of the characteristic equation
LA) =

are distinct, real, negative, and
Al >e- A

Eliminating now g¢{t) from {2.1), (2.2) one obtains
" L(% + w?s) = eLf{z, 3} + /= bé(t)
Forming the characteristic equation of the generating linear equation (= = 0)
(A% +w?)gA) =0
. -one gets the general solution in the form
n - .
z(t) = Z Cie* tacosp, p=wt+6 -
i=1
Thus, according to the averaging method we make the replacement [4]

dFz

Fr a(t)Bt" cos(vt + 4(t)) k -0,L,...,n+1

where a(t),_ 6(t) are Markov diffusion processes sa.tisfying the equations

& = eus(a, 0) + Ver(a, 0)é()
g = eug(a, 0} +Veva(a, 6)¢(t)

or turning to the variable a, ¢ one gets

G =. L0 | (G, ’P)I + ‘\/EVI (ﬂ, ‘P)S:(t)
p=uw +_5u2(a: ‘p) + \/EV2(G'I ‘P)g(t)

where one has
_ 2
uyfa, @) = ——[Lf(z, a:)]o sin(p + p.) + b—r cosz(cp + s}
bz
uz(a, ) = **——ILf (2 2)]o cos{p + ‘Po) ~553 cosle + ou) sin(p + @)

vi(a, ) = "E"‘ sm(sp—i- SP.] I_Jz(a, so) = i—; cos(p +@.)
. P k N
_[Lf(:r:, lo =Lf(z, m) dt" = :t* cos p

n

n .
=Y e r=Iln
i=1

i—1

=N +w? sinpi=—, cospi=-—
. 3

3

IT O =230 - 20)

m>i>s

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)




For system (2.12), the corresponding Fokker-Flanck equation for stationary probability density
function W (a, ) of amplitude and phase can be formed as follows

aw

| Y3 = —sLl(W) N (2.14)
where the opg.ra.tor L1 is defined as
| 18 aun O 18, ,
LW)= 2w -2 Doy + 2 5 (127 - 2 () - it )

The solution W(a, @) of Eq. (2.14) is to be obtained in the form [5]
W(a,p) = Z &' Wila, p) (2.16)

Substituting {2.16) into {2.14) and comparing the coefficients of like powers of ¢ gives

W, - _
“.’——“ap =0 : (2.17)
Werr o ' o
S w~—a‘;tl=—L(W,-), i=0,1,2,... S (2,13)
Since the fu:x_lcf.idns W;(a, ) must be periodic ones of variable ¢, one gets from-(2.18)
(Li(W3)) =0 o (2.19)

where { ) is defined as the avera.ging.operator
. 2w .
1
()= é—[ )dtp {2.20)
) . . 0 i .
Thus, one gets from (2.17) and (2.19) fori =0

o= Wi an

{(L(Wo(a))) =0
We expand into a series of Fourier
u.-(a., )= Z (S,-j(a) sin 25 + C.-,-(a) cos 2J'tp)
= (2.22)

vela, cp)vk(a, ©) = Z(Sg,(a.) sin 25 + Cu;, [a.) cos 2_159] : i k= 1,2

' 'Substituting (2.22) into (2.15) yield

L(Wg{a))-- {[3 ( 13W0) ;aaz(SnJWg)] sm2_7¢p :
- =0
1 9%

+ [3_ (CLJ'WO 2322 (C'nj Wo)] cos 27p 'i' [(Sg‘, Wo — (SIZjWD)

+ 3W0022,) sin 27 + (Co;Wo — *"- (OIZJWO) - JWoszz:} cos2) @] } :
(2.23)



Substituting (2.23) into (2.21) gives the equation for Wo(a)

& ‘ - :
(0110Wo) =0 (2.24)

| 3q(C10Wo) = z a 2
After finding Wo(a) and substituting it into (2.18) for + = 0 one gets
Wilore) == f Lwolde | (2.25)
or noting (2.23) o -
W1(a, p) = Wo(a)Wm {a) + E(WJa (a) gin 2390 + Wje(a) cos 25¢0) (2.26)
=1
where it 13 denoted _ _
R B SR S
Wiala) = -—{ [ 3 a( C1;Wo)} — 5;_,,—-;5(01_1:“'0)] + S3;Wo - ""(Slzz‘Wo) + JWoc'zzj}
I 2.27
i e 18 (2.27)
Wie(a) =“-‘“‘{Czjwa - a—(C1szo) -Jszz;'Wo - [ (81;Wo) — ) (SIIJWO)]}

The arbitrary mtegratlon functlon Wm(a) (2 26) will be deﬁned by conmdermg (2 18) and
(2.19) for the case s =1 . -

W, oL
Yo = -L{w,) _ : (2.23)
(L(W)) = e (2.29)

Substﬂ;utmg (2 26) into (2.29) yields the differential equation for Wm(a)

m

1 . o
(CwWon) - ig(cl‘mwowm) + ‘2‘; {(Sljwja + C1J'ch) “* Ea_a(slljwja + Cujoc)} =0
Finally, using (2.24) one obtains the explicit form of Wyo(a) ,
Waola) = 3° { f [ (6) + CuslaWse(a) = -2 (8115 )
=1 Cio(a)Wo(a) 17 H e 28a N
+CuJ(a)W,,,{a))] da} L _ C(2.31)

where the coefficients Cix(a), Six(a), C'uc,. Slk,, Wo(a), W,,(a) W,c(a) are found from (2.22}, -
(2.24) and (2.27), respectively. Thus, finally according to the averaging procedure the second
approximate solution to the FP equation (2.14) is defined as

W) = Wola) + lWolaWiola) + Waalal] . (232

So, it is ;mportant that the second approximate solution can be obt.amed in expl1c1t form as 1t
shown from (2.26), (2.27) and (2.31).

3. APPiICATION-TO THE EXPON-ENTIALLY CORRELATED PROCESS

Let q(t) be an exponentially correlated stationary random process, with following spect.ral
densuty and correlation funetion ‘




The corresponding forming filter is
Lg = §(t) + aglt) = 6rV2ac(t) R

According to the procedure descﬁbed the solution of the system (2.1), {3.2) is defined in the
form :

z(t} = acosp, = —awsing, &= —aw’cosp (3.3)
For the case (3.2) one has, see (2.13)

w [+

n=1 A=-—a, singo1=-—£”/-5-——_:;2-, cosg, W ‘
. =p1, r=r=Va?+u? (3.4)

Lf=g£+af

The amplitude and phase differential equations are described by.(2.12) where

_(df/dt 4 af)osinp + 1) §20% cos®(p + ¢1)
wva? +w? wia{w? + a?)
uala, ) = — (df /dt + o f)o cos{p + tpl) 3 §2a?sin®(p + p1)
! awva® + w? w?a?{w? + o?)
(e p) = 51V 2asin(p + 1) . valay o) = 812 cos( + ) _
’ wva? +w? ' wave? + w?

Further, the solution to the correspending FP equation can be performed as described above

| uia,0) =

(3.5)

4. DUFFING OSCILLATOR

Tt is wellknown that the exact solution of the Duffing oscillator subject to coloured noise it not
available up to now. So, the approximate solutions are to be interested. So, consider the Duffing
system

I+ 2ehi + Wiz + a5 = Veg(t) (4.1)
where g(t) is the exponentially correlated random process (3.1). For this case, one gets

d - | .
| f(a:,z) = —~2hi — 17, -&‘1;- + af = =2hi - 2aht — 3v5%% - ayz® (4.2)

Substituting (3.3), (3.4), (4.2} into (3.5) gives

2

uifa, p} = Z(S,-,-(a,) sin 25 + Cij{a) cos 25p)

= (4.3)

ve(a, pYvile, ) = Z:(Sac,'(ﬁ) sin 2Jp + Cyei{a) cos 27p)
J=0




where:

2 = o 4 w?
2
S10(G) = 0, 010(4) = —hd‘l' 2&!.03!'2 ) ,
' Ly 2 2 2 _ 8o’ '
, _ 1 o e _ . 44
Su(a) wrz[ (o~ 36?) - 2ahau? — L3 ] o (4.4)

‘7“3 2 é a®
_Su(_ﬂ = 512(4): [m(a — 3w )]: Ciafa) = 2’,2 ’
. ) 3 ' .
Szo(a.) = 0,‘ Cgo(a) = S_wjas'

Ca 3 “2_ 214
Saa(e) = 5 [ho? - o) —apar - B

aZwlr? -
1 ra®ya® 26%a?
7021(6"] = f—,_;[ o Qexhus — agwrﬂ]
ava? ~a? _ .
322(3) == 2r2 ? 022(0) = m(az + 30)2),
o §ia
S110(a) =0, Cuio(a) = = |
263 L 2a(w?—o?) S .
Sll],(a) 1 C].].l(a) %4—.—.—). ; 3120(3) = 0, 0120(0) = 0’ i N
,61 a(a — W ) ) 25?(12 . } _ 6?& .
Sinle) = e Cin(0) = T Smola) =0, Cmlo) = iz s
_26%a% 82ala® —w?)
Sggl(a} 21 -~ ) 0221{5) .}_.CST“M—) .

Substltutmg C‘m, C'110 from (4. 4) into (2 24) yle]ds (C’ = const)

n " 2wtha?
Further, 'suBstitu_ting (4.5}., {4.4) into (227) one gets
Vo (1208 W e = S ga TR = 3)
= Wola) (1a4), | 3 2 ahle? =32 o B
Wy, = Wg(a)( Y a ), Wy, = Wg(a)( 58" - “1657a a )

Usmg (2 31) for m =2 and notmg (4 4) (4 6) a.fl;er some calcula.tlons one ha.s
3"1 2.6 2 - _h_‘:’__ - 2{0y2 _ o2 e
Wfo(a) 1663 = [10; a’+ (4ahw +ha ~ )a 6 (w o ]a] (4.7)

“Thus, the second ‘approximate proba.blhty density functmn of a.mphtude and pha.se to the
Duﬂ’ing system (4.1) is found as : : :

; W(a,p) Caexp {—{Ol +w2)%)2ha2}{1_ ___;_E‘E;__[,rwﬂa6 +_(4dmz ¥ ha" - _h.‘;it)a‘i

§2a 1652(a2 + w"‘)
662(a® — wl)a?)  eyhw , evh{a® - 30%)
N CETD) J+ 67 ¢ 2= [z(a2+w=) T o] conzp
evhw o . . . g 351!1(0: — 3w?) 4] - o
+ dp - | 4.8
252 & gin 4 [4(a3+w2)a + 16872 - gos4p} . o ‘)



In the limit case when the coloured noise g{t) tends to an white noise §£(), i.e.

268 5
o, 8 — +oo, — = 6% = const (4.9)

the solution {4.8) tends to the following expression

2uw? ha? } [1 _evh

2 357 a*(3 + 4 cos 2¢ + cos 4@)] {4.10)

W(ar‘p) = Ca’_exp{ -
which is obtained in [5}.

Table 1. Mean - square amplitude of Duffing oscillatior to coloured
noise forw = 1;7=0.1; h=1; e = 0.1; 0% = 20

a (a®) {a®)o
2.0 7.134 8.148
4.9 4.500 4.719
6.9 3.156 3.246
8.0 2.143 2462

10.0 1.950 1.981

In Tab. 1 the mean - square amplitudes of Duffing oscillator subject to coloured noise (4.1)
are given when the bandwidth parameter o varies. It is seen that the mean - square amplitude
decreases when a increases from 2.0 to 10.0, and for @ = 10.0 the mean - square amplitude is
closed to the one (value 1.944) of the corresponding Duffing oscillator subject to the white noise
with intensity equal to 0.4. In Tab. 1 the mean - square amplitude of corresponding linear system
{a®)o, (y = 0), is also given. It is shown that in the case of coloured noise the effect of cubic
non-linearity can be investigated by using higher order averaging procedure proposed,

" 5. CONCLUSION o

The averaging method is an useful tool for investigation both deterministic and stochastic
quagilinear system. In the stochastic problems, however, the method has often heen developed
only for white noise excitations. The results obtained show that the higher order averaging method
can be successfully extended to the cases of coloured noise excitation.
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