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Many Asian deltas located downstream of big rivers have been developed as paddy fields area, 
but they appear to be suffered from floods and also serious drainage problems. In these areas, 
tributary rivers, branch rivers and drainage channels often form networks, and flow direction in 
such waterways is usually affected by tide and is not consistent. In order to design flood control 
facilities or to improve drainage systems, such a technique is required as can exactly estimate and 
calculate water levels in rivers or channels. Usual runoff analysis which is carried out by water 
balance equation and simplified movement equation cannot deal with such complex phenomena 
and the unsteady flow analysis method should be utilized for such problems. 

There have been developed many numerical methods including the finite difference method 
and the finite element method for unsteady flow simulation. Although they have their own merits 
and demerits, the finite difference method is simple and effective, when we analyze the movement 
of one dimensional flow which can approximate river or channel flow. Especially, the implicit finit~ 
difference method, which has usually complex calculation procedure, has a high practical value, 
because it can take a very long time step and its computational time is much shorter than that of 
the explicit method. When we solve a problem by an implicit method, we must solve a. simultaneous 
nonlinear equation system once every time step, which means we must solve a simultaneous'linear 
equation system several times every time step. H we can not solve such simultaneous linear equation 
system effectively, the calculation time becomes enormous for numerous mesh number, which leads 
to the loss of the implicit method's merits. The Double Sweep Method (1980) is already devised 
for the branched channel network calculation and it can solve the simultaneous linear equation 
system very effectively. On the other hand, various kinds of procedures are employed to solve a 
looped channel network's calculation by trial and error base, although the principle is known to 
solve the problem. 

In tbis study we will devise an algorithm which can effectively solve the simultaneous linear 
equation system for the looped channel network based on the similar procedure used for the Double 
Sweep Method. We also consider the calculation order of branches and the classification of channel 
networks as welt 

Unsteady flow simulation in a single channel 

We had better confirm the calculation method by the Preissmann Scheme ( 1961) before we 
consider about that of the loope.d channel network. The Saint-Venant equations (1871) are usually 
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used for the governing equations. They are shown below 

aA aQ - +- = 0 (Continuity Equation) 
at ax 
aQ a ah at+ ax ( uQ) + gA ax = gA(So - St) (Momentum Equation) 

where A. cross sectional area, t. time, Q ·discharge, X· distance, u = QjA ·velocity, h ·depth, 
80 - channel slope, g - gravitational acceleration, and Sf - friction slope. H the above governing 

. • . Bf aa 
equations are descnbed by the conservatiOn form of at + ax = H, then they are discretized 

according to the procedure of the Preissmann Scheme as follows. See Figure 1. 
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Fig.l. Layout of the Preissmann Scheme 

.where n - time step index, j - computational point index, !l.t .. time interval, and !:::.x- distance 
between two adjacent computational points. According to the above procedure, the governing 
equations are discretized showing relations between eight hydraulic quantities on four mesh points. 
Among them four hydraulic quantities on two mesh points (j, n) and (j + 1, n) are already known, 
therefo~e we caD. obtain two algebraic equations showing relations between unknowns h'jj11 

1 hj+1 
1 

uj:J azid uj+1
• Superscripts of n + 1 in the four unknowns will be omitted from now on for 

the simplicity. Two algebraic equations shown below correspond to continuity and momentum 
(movement) equations 

If there exist N mesh points in a single channel, the number of unknowns is 2N because there 
are two unknowns on each mesh point. On the contrary, since there are N -1 intervals between mesh 
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points and there are two algebraic equations for each interval, we can obtain 2{N- 1) equations. 
We also obtain two more equations shown below corresponding to the boundary conditions being 
given to both sides of the channel. As the result we can obtain 2N algebraic equations in all. See 

Fig.2 
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Fig. 2. Equation System for the Preissmann Scheme 

The above algebraic equations are usually nonlinear and the Newton-Raphson method is 
commonly used to solve this kind of nonlinear equation system. In the Newton~Raphson method a 
nonlinear equation is expanded by the Taylor expansion around the temporary solutions, and the 
nonlinear equations is approximated by a linear equation, which has also four unknowns but they 
are differences between the temporary solutions and revised solutionsj f::J.hi+i, tl.hi, Auj+l' and 
Au;. They are shown below 

LL =bLAh,+ dLAu, + eL = 0 (Left boundary), 

Li,j = ai,jAhi+l + bi,iilhj + ci,it:..u.i+I + di,if::l.ui + e,u = o, 
(i = 1,2), (j = 1,N -1), 

LR = aRAhN + cLD.uN + •R = 0 (Right boundary). 

The Double Sweep Method is used to solve the above simultaneous linear equations system 
which consists of 2N equations. Firstly, the left side boundary condition LL is used and is solved 
with respect to tl.u1 as shown below 

Secondly, this .equation is substituted into two linear equations Li,l (i = 1, 2), and from two 
equations two unknowns .6.u1 and .6.h1 are eliminated. Then we can obtain a linear equation 
having two unknowns Llu2 and tl.hz, which is equivalent to the left boundary condition. We can 
again solve this equation with respect to .D.u2 , and by iterating this prOcedure we can obtain 
following relations from j = 2 to j = N 

Au;= W;Ah; + Y,·, (i = 2, N). 

The above process is called the Forward Sweep. 

The last equation of AuN = WNAhN + YN has two unknowns AuN and AhN, and the right 
side boundary condition has also two same unknowns. Therefore, two simultaneous equations can 
be solved for AuN and AhN. By substituting AuN and AhN into the linear equations L;,N we 
can obtain AuN-l and .6.hN-l· Same procedure can be used to solve other solutions D..ui and 
Ah; (i = 1, N - 2). This process is called the Back Sweep. The solutions of the simultaneous 

55 



linear equations are used to improve the temporary solutions of the original nonlinear equations, 
and finally we can approach very closely to the real solutions. 

Unsteady Flow Simulation in a Branched Channel Network 

We can apply the Double Sweep Method to a branched channel network with a minor proce­
dure change. We will demonstrate the calculation procedure for a Y sh"aped channel system, where 
two channels A and B meet and merge to form channel C. see Fig. 3 
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Fig. 3. Branehed Channel Network 

Each channel A, B, or C is called branch, and boundary condition is given for each channel; 
upstream boundary conditions for branches A and B, and a downstream boundary condition for 
branch C. we can perform the Forward Sweep for two branches A and B in the same way as we 
did for a single channel. When the numbers of mesh points in branches A and B are N A and N B, 

respectively, we can obtain following relations for branches A and B 

!1uA,j = WA,;t1hA,; + YA,;, 

11uB,i = WB,;I1hB.i + YB,;, 

(j = 1, NA) for Branch A 

(j = 1, NB) for Branch B. 

We want a similar relation with the above two for branch C, but we cannot go far beyond the 
junction without using other three equations at the junction. Among three equations, two are 
energy equations usually showing same water levels at ends of three branches, and one is continuity 
equation. They are shown below 

hA,NA + ZA,NA = hB,Na + ZB,Na = hc,Nc + Zc,Nc (Energy Equations) 

QA,NA + QB,Na = Qc,Nc (Continuity Equation). 

The above equations can be approximated by following three linear equations having six unknowns; 

11hA,NA> 11uA,NA, 11hB,Na, 11uB,Na, 11hc,lo and Auc,t 

(i = 1 and 2: Energy Equations, i = 3: Continuity Equation) 

56 



As we now have five equations for six unknowns, four unknowns can be eliminated and we get a 
following relation similar to the boundary condition 

Ll.ua,l = W C,ILl.hc,l + Yc,1· 

Then we can apply the Forward Sweep to branch G, and obtain following relation on each mesh 
point in branch G. 

Ll.ua,; = Wa,;Ll.ha,; + Ya,;, (j = 2,Na) for Branch G. 

When we go to the final mesh point of branch C, that is, at i =No, we can use another boundary 
condition, and dho,Nc and l::l.uo,Nc can be solved. The procedure after this is almost the same 
with that used for a single channel. In case of a branched channel network we can use the Double 
Sweep Method, and calculation can be performed effectively. Such a junction as connects two 
already-wept branches to one not-yet-swept branch will be called junction of Type 1. 

Classification of Channel Networks 

Although we have already tacitly classified channel networks as a single channel, a branched 
channel network, and a looped channel network, we had better divide the looped network further 
into "simple looped network" and "complex looped network", because calculation procedures for 
two types of looped networks are different from each other. 

Simple Looped Network 

We consider a channel network system consists of six branches A, B, C, D, E, and F as 
shown in Fig.4. Three branches D, E, and F compose a triangle, and other three branches A, 
B, and G are connected to three vertexes of the triangle. We can perform the Forward Sweep for 
three branches A, B, and C, but we cannot go further anymore. Here we notice that we need 
not to distinguish a downstream end from upstream ends and there exist only ends, because the 
former calculation procedure that proceeds from upstream branches to downstrearn.ones is no more 
effective. 
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Fig . .f.. Simple Looped Network 

General case 

If we perform the Forward Sweep at all events, three branches D, E, and F composing a 
triangle remain untreated. In this stage we can see the feature of the single looped network. When 
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we see all junctions located at three vertexes of the triangle 1 we can find that one already~swept 
branch and two not-yet-swept branches join at each junction. This kind of junction will be called 
junction of Type II here. This is a typical feature of the single looped network. In case of the 
complex looped network 1 on the contrary1 there exist some junctions where three not-yet-swept 
branches join. Such a junction will be called junction of Type III. 

Although all branches in a simple looped network are even and we can start calculation 
anywhere, we will start from branch A counterclockwise. Let N D mesh points exists in the branch 
D and let all mesh points be numbered also counterclockwise. We suppose here that LluD,2 and 
6.hD,2 can be expressed by using LluD,l and 6-hD,l as follows 

6.uD,2 = W1D,26.uD,1 + W2D,2Ll.hD,1 + W3D,2 

Ll.hD,2 = Y1D,2Ll.uD,1 + Y2D,2Ll.hD,1 + Y3D,2 

where .6.uD,b AhD,1, AuD,2 and .6.hv,2 are differences between temporary and revised solutions 
on mesh points 1 and 2, respectively. 

The above expressions are always possible, because there are two linear equations approximat­
ing continuity and movement equations against four unknowns; Attv, 1 , t:J..hv, 1, .6.u.n,2 and llhn,2 
on two mesh points 1 and 2, and 6.uD,2 or Ll.hD,2 can be eliminated from two equations each other. 
The same treatment is also possible for four unknowns; Ll.uD,2, Ll.hD,2, Ll.uD,3 and Ll.hD,3 on mesh 
points 2 and 3, and Ll.uD,3 and 6.hD,3 are expressed by Ll.uD,z and LlhD,Z· as two unknowns 
LluD.z and LlhD,2 are already expressed by Ll.uD,l and Ll.hD,l> finally 6.uD,3 and Ll.hD,3 can be 
expressed by .6.ttn,1 and tl.hn,I· By iterating this procedure, we can obtain following relation on 
each mesh point in the branch D 

LluD,; = W1D,;Ll.uD,l + W2D,;Ll.hD,l + W3D,; (j = 1, ND) 

LlhD,; = Y1D,;Ll.uD,l + Y2D,;Ll.hD,l + Y3D,; (i = 1,ND) 

Through the above process resembling to the Forward Sweep, two unknowns Ll.uD,No and LlhD,No 
at the end of the branch can be expressed by two unknowns Ll.uD,l and Ll.hD,l at another end 
of the branch. At the junction where branches B, D, and E join, we have already known the 
information about Llu.B,N• and LlhB,N• as shown below 

Moreover, we have other three equations showing continuity and energy relations among three 
branches B, D, and E. Three equations are the same with those shown for a junction of Type 
I, a.nd are approximated by three linear equations shown before. Now as we have five equations 
against eight unknowns, five unknowns can be eliminated. Then we can express Att.E,l and Llhe, 1 , 

and further 6.uz,1 and Ll.hz,; (i = 2,Nz) in the branch E by two unknowns LluD.l and Ll.hD,l 
in the same way. For unknowns on the branch F, we can also express them by ~u.v, 1 and Ahv,lJ 
and finally two unknowns Ll.u.D,l, and LlhD,l, on the branch D can be expressed by themselves as 
shown be low. 

Ll.u.D,l = W1DzFLl.uD.l + W2DzFLl.hD,l + W3nEF 

Ll.hD,l = Y1DEFLl.UD,l + Y2DBFLl.hD,l + Y3DEF· 

As above two equations have only two unknowns Llu.D,l and Ll.hD,1 , they can be solved. Once 
we get the values of Ll.u.D,l and LlhD,l> all other unknowns are solved because they are already 
expressed by Ll.u.D,l and Ll.hD,l· 
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In case of the simple looped network, we can utilize similar procedure -to the Forward Sweep 
and we need not deal with a matrix, which saves computational time considerably. After solving 
the unknowns in branches D, E, and F which compose a loop, unknowns in other branches A, B, 
and C can be solved by the ordinary Back Sweep. 

Complex Looped Network 

As_ ap_ -~xample,_JII·~~-- t;:_o~_s~~-er __ a ~?~P~4 __ uetwork system which consists of seven b_ranche~ ... as 
shown in Fig. 5. Two branches A and B have their own ends to ~hich boundary~~onditio!l~s ;,.:~ ·· 
given, and we can conduct the Forward' Sweep for these branches 
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We cannot use the quite same procedure used for the simple looped network, because there 
are two junctions of Type III here. Two junctions of branches C, F, and G and of branches D, E, 
and G are Type III. Other two junctions of branches A, C, and D and of branches B, E, and F 
are Type II. 

We need to consider some branch set here. A branch set consists of a single or a series of 
branches connecting two junctions of Type III. There exist three branch sets; set (1) composed 
of branches C and D, set (2) composed of branches E and F, and set (3) composed of branch 
G. All unknowns l:.ux,J and l:.hx,i in branch X in a certain branch set (i) can be expressed by 
two unknowns t:.u8 , 1 and l:.hs,1 in top branch S in the same branch set (i). This situation is 
similar to that of the simple looped network except that first two unknowns cannot be expressed 
by themselves. Through this procedure, last two unknowns t:.uT,N. and t:.hT,NT can be expressed 
by first two unknowns l:.us,1 and l:.hs,1 as shown below 

t:.uT,N• = Wl(;)l:.us,l + W2(i)l:.hs,l + W3(i) 

t:.hT,N• = Yl(;)l:.us,l + Y2(;)l:.hs,l + Y3(i) 

where the branch S is located at the top end, and the branch T at the tail end in the branch set 
(i). 

What is important here is that all unknowns in a branch set can be expressed only by first two 
unknowns. In other words, there are only two independent unknowns in a branch set. As there 
are three branch sets, in this example, the total number of unknowns is six. The total number of 
equations is -also six, because there are two junctions of Type III, where six equations, two energy 
and one continuity equations on each junction, can be obtained. As the ratio of Type III's junction 
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number to branch set number is always 2 : 3 in a complex looped network, we can always obtain 
sa.me number of equations with that of unknoWns. 

Six unknowns, in this example, cannot be solved effectively without using matrix calculation 
like the Gauss' Elimination Method. In this method, a matrix whose components are coefficien,t$ 
of simultaneous linear equations is transformed to a triangular matrix (forward steps), and un-~. 
knowns are solved successively from bottom to top {backward steps). Although this method is 
very effective, !tS calcUlation _time is approximately proportional .to the third power of unknowns' 
number. As this part ~ay be the most time-consuming in numerical calculation process, we should 
not adopt such a method as uses four unknowns in a branch set. In the above example, l!..uT,NT 
and .l!..hT,NT should not be used as unknowns, but they should be used by the forms expressed in 
advance by .!!..us,1 and .l!..hs,t· Once six unknowns are solved by the Gauss' Elimination Method, 
we can solve easily all other unknowns in branch sets.just like we did in the case of the simple 
looped network. Other branches A and B are solved by the Backward Sweep as well. 

Practical application of computation method 

Under developed technique, a practical application of computAtion and its calibration have 
been carried out in South Ninh Binh irrigation system. The system is sketched as shown in the 
Fig.6 
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Fig. 6. Measurement stations in the South Ninh Binh river system 
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For computational purpose the system then was schematized that comprises of 7 looped cycles 
as shown in the Fig. 7 
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The computation was carried out at the Water Engineering and Management Program, School 
of Civil Engineering, Asian Institute of Technology, Bankok Thailand. By comparison between 
observed and computed results, the agreement was considered satisfactory . See figures 8 below 
that shows the comparison between observed and computed result at some important locations. 
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Fig. 8a. The Calibration of Water Level at Cau Hoi station from 28/8 to 04/9/1995 
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Conclusions 

Through this study followings are achieved. Firstly, it was found that the looped networks 
should be classified into simple and complex channel networks according to the type of junction. 
Secondly, it was also showed that the numerous unknowns in branches composing loops were 
reduced to a minimum number by-the devised procedure similar to the Forward Sweep, where two 
top unknowns- is- a group of branches were used to express other unknowns in the same group. 
FinallY, ~we· could present tWo ways to solve unknowns for both Cases. In CaSe of the- ·simple looped 
network, number of unknowns was reduced to only two, and they could be solved without using 
matrix calculation.· In case of the complex looped network, it was decomposed into branch sets 
and the number of unknowns was reduced to twice of branch set number. They could be solved 
by a matrix calculation such as the Gauss' Elimination Method. Through the above proCess we 
succeeded in developing an effective method applicable to any type of channel network. A case 
study was done with satisfactory result. 
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VE PHUONG PHAP TlNH TOAN DONG KHONG ON DINH 

BANG sa Do PREISSMAN cHo Ht THONG LONG DiN 
CO LIEN Kih PHlJC T4P 

Nhih dllng bLlg cda khu vvc chiiu A <r vlmg h~ du cac song 16-n Ia cac vung canh tac lua 
nu-&c, tuy nhien chUng thtrimg bi ng~p h,tt vii v~n d~ tieu ung iY day thu-ang rfit kh6 khan. & cac 
khu V1fC nay CaC song nhanh Va CaC kenh tieu th11/mg t~O nen CaC m~ng J116i trong d6 dong ch<\.y 
bi anh h11&ng Mi thuy tri~u vii khOng dllng nhO:t. D~ thigt ke' cac cong trlnh ch5ng Iii va nltng cao 
hi~u qui h~ th5ng tieu, c"an ph<l.i c6 ky thu~t dv baa va tfnh toan chinh xac muc ntr&c trong song 
kenh. 

Trong bai bao nay chung toi xay d1fllg m(lt thu~t to an c6 thg gilri m(lt each hi~u qui h~ phm:mg 
trlnh di~u khi~n mo tiL dong chiy khOng ~n djnh trong h~ th5ng kenh M. Ky thu~t tfnh toan dva 
tren nguyen t'c sa.i phin hiru h{lll h theo sad~ do Preissmann d~ nghj. 

Ky thu~t khdo duffi da d11gc phat tri~n d~ gilLi bai toan kenh don. Kenh phiin nbanh dcrn gilLn 
da d11gc d~ c~p vii sau d6 trlnh bay phm>ng phap tinh toan cho tru-lmg hgp h~ th5ng kenh lien 
ke't phuc t~p d~ gi!m thi~u t5i da kh5i hr<!llg tinh toan va b(l nh& may tinh (tru-lmg hqp looped 
don gian va looped phfrc t'I-P)• Nghien cw ciing se gi&i thi~u tieu chuiln phiin lo')-i ltr&i kenh va 
cic chi d~n trong cac trlllmg hqp ap d\lng. 
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