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Preface

Many Asian deltas located downstream of big rivers have been developed as paddy fields area,
but they appear to be suffered from floods and also serious drainage problems. In these areas,
tributary rivers, branch rivers and drainage channels often form networks, and flow direction in
such waterways is usually affected by tide and is not consistent. In order to design flood control
facilities or to improve drainage systems, such a technique is required as can exactly estimate and
calculate water levels in rivers or channels. Usual runoff analysis which is carried out by water
balance equation and simplified movement equation cannoi deal with such complex phenomena
and the unsteady flow analysis method should be uiilized for such problems.

There have been developed many numerical methods including the finite difference method
and the finite element method for unsteady flow simulation. Although they have their own merits
and demerits, the finite difference method is simple and effective, when we analyze the movement
of one dimensional flow which can approximate river or channel flow. Especially, the implicit finite
difference method, which has usually complex calculation procedure, has a high practical value,
because it can take a very long time step and its computational time is much shorter than that of
the explicit method. When we solve a problem by an implicit method, we must solve a simultanecus
nonlinear equation system once every time step, which means we must solve a simultaneous linear
equation system several times every time step. If we can not solve such simultaneous linear equation
system effectively, the calculation time becomes enormous for numerous mesh number, which leads
to the loss of the implicit method’s merits. The Double Sweep Method (1980) is already devised
for the branched channel network calculation and it can solve the simultaneouns linear equation
system very effectively, On the other hand, various kinds of procedures are employed to solve a
looped channel network’s calculation by trial and error base, although the principle is known to
solve the problem.

In this study we will devise an algorithm which can effectively solve the simultaneous linear
equation-system for the looped channel network based on the similar procedure used for the Double
Sweep Method. We also consider the calculation order of branches and the classification of channel
networks as well. ‘

Unsteady flow simulation in a single channel

We had better confirm the calculation method by the Preissmann Scheme (1961} before we
consider about that of the looped channel network. The Saint-Venant equations {1871) are usually
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used for the governing equations. They are shown below

s + i (Continuity Equation)

aQ 3 dh i
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where A - cross sectional area, t - time, @ - discharge, 7 - distance, v = @ [A.- velocity, h - depth,

Sy - channel slope, g - gravitational acceleration, and Sy - friction slope. If the above governing
3 aG . Lo
equations are described by the conservation form of 8/ + —— = H, then they are discretized

z
according to the procedure of the Preissmann Scheme as follows. See Figure 1.
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Fig. 1. Layout of the Preissmann Scheme
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- where n - time step index, j - computational point index, At - time interval, and Az - distance .
between two adjacent computational points. According to the above procedure, the governing

"equations are discretized showing relations between eight hydraulic quantities on four mesh points.

Among them four hydraulic quantities on two mesh points (7, n) and (j + 1, n) are already known,

therefo;e we can obtain two algebraic equations showing relations between unknowns h;-':ll, h;"‘l,

u_,".'_;_"ll and u"*'. Superscripts of n + 1 in the four unknowns will be omitted from now on for

the simplicity. Two algebraic equations shown below correspond to continuity and momentum

(movement) equations

Fj(hji1:h5, 241,45} =0, (= 1: continuity, ¢ = 2 : movement).

If there exist N mesh points in a single channel, the number of unknowns is 2V because there
are two unknowns on each mesh point. On the contrary, since there are N —1 intervals between mesh
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points and there are two algebraic equations for each interval, we can obtain 2{N — 1) equations.
We also obtain two more equations shown below corresponding to the boundary conditions being
. given to both sides of the channel. As the result we can obtain 2V algebraic equations in all. See
Fig.2
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Fig. 2. Equation System for the Preissmann Scheme

The above algebraic equations are usually nonlinear and the Newton-Raphson method is
commonly used to solve this kind of nonlinear equation system. In the Newton-Raphson method a
nonlinear equation is expanded by the Taylor expansion around the temporary solutions, and the
nonlinear equations is approximated by a linear equation, which has also four unknowns but they
are differences between the temporary sclutions and revised solutions; Ahj i, Ahj, Aujry, and
Auy. They are shown below '

Ly =bpAhy +drAuy +er =0 (Left boundary),

Lij = ai jAhjy1 +bijOh; + ei jAujpy +dijAuj +e ;=0
=12}, =1LN-1),

Lr = agpAhy +crAuy +eg =0 (Right boundary).

The Double Sweep Method is used to solve the above simultaneous linear equations system
which consists of 2N equations. Firstly, the left side boundary condition L;, is used and is solved
with respect to Au, as shown below

A'U-]_ = W]_Ah}_ + Y]_.

Secondly, this equation is substituted into two linear equations L;; (i = 1,2), and from two
equations two unknowns Au; and Ah; are climinated. Then we can obtain a linear equation
having two unknowns Auz and Ahg, which is equivalent to the left boundary condition. We can
again solve this equation with respect to Aug, and by iterating this procedure we can obtain
following relations from j =2to j= N

- Au"J'.=: WJ"AhJ'"i"YJ'r (7=2,N}.

The above process is called the Forward Sweep.

The last equatioh of Auy =Wy Ahy + Yy has two unknowns Auy and Ahy, and the right
side boundary condition has also two same unknowns. Therefore, two simultaneous equations can
be solved for Aupy and Ahy. By substituting Auy and Ahy into the linear equations L;,N we
can obtain Auy_, and Ahy ;. Same procedure can be used to solve other solutions Au; and
Ahj (7 = 1, N — 2). This process is called the Back Sweep. The solations of the simultaneous
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linear equations are used to improve the temporary solutions of the original nonlinear equations,
and finally we can approach very closely to the real solutions.

Unsteady Flow Simulation in a Branched Channel Network

We can apply the Double Sweep Method to a branched channel network with a minor proce-
dure change. We will demonstrate the calculation procedure for a ¥ shaped channel system, where
two channels A and B meet and merge to form channel C. see Fig.3
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Fig. 8. Branched Channel Network

Each channel A, B, or C is called branch, and boundary condition is given for each channel;
upstream boundary conditions for branches 4 and B, and a downstream boundary condition for
branch €. we can perform the Forward Sweep for two branches A and B in the same way as we
did for a single channel. When the numbers of mesh points in branches A and B are N, and Npg,
respectively, we can obtain following relations for branches A and B

Augj=Wuj0hs;+Yay;, (7=1,N4) for Branch A
Aup; =Wp ;Ahp ;+Ye;, (7=1,Ng) for Branch B.

We want a similar relation with the above two for branch C, but we cannot go far beyond the
junction without using other three equations at the junctjon. Among three equations, two are
energy equations usually showing same water levels at ends of three branches, and one is continuity
equation. They are shown below

han,+Zan, =hpng +ZB N, = heNe +ZonN; (Energy Equations)
QaN. + QBN =QcNe {Continuity Equation).

The above equations can be approximated by following three linear equations having six unknowns;
AhA'NA, AuA,NA, AhB,NB, Au‘B.Naj Ahc,j_, and AUGJ

P, pAha N, + P, pAhg Ny + Pohcy + giaduaw, + ¢,plup ny + g oBucy =Ty
(: = 1 and 2: Energy Equations, ¢ = 3: Continuity Equation)
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As we now have five equations for six unknowns, four unknowns can be eliminated and we get a
following relation similar to the boundary condition

Augy =Wealhe + Yo

Then we can apply the Forwa.rd Sweep to branch C, and obta,m followmg relation on each mesh
point in branch C.

Aug;=Webhg;+Yo; (i=2Ng) for Branch C.

When we go to the final mesh point of branch C, that is, at § = Ng, we can use another boundary
condition, and Ahg . and Aug n, can be solved. The procedure after this is almost the same
with that used for a single channel. In case of a branched channel network we can use the Double
Sweep Method, and calculation can be performed eéffectively. Such a junction as connects two
already-wept branches to one not-yet-swept branch will be called junction of Type 1.

Classification of Channel Networks

Although we have already tacitly classified channel networks as a single channel, a branched
channel network, and a looped channel network, we had better divide the looped network further
into “simple looped network” and “complex looped network”, because calculation procedures for
two types of looped networks are different from each other.

Simple Looped Network

We consider a channel network system consists of six branches A, B, C, D, E, and F as
shown in Fig.4. Three branches D, E, and F' compose a triangle, and other three branches A,
B, and C are connected to three vertexes of the triangle. We can perform the Forward Sweep for
three branches A, B, and C, but we cannot go further anymore. Here we notice that we need
not to distinguish ¢ downstream end from upstiream ends and there exist only ends, because the
former calculation procedure that proceeds from upstream branches to downstream ones is no more
effective,
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Fig. 4. Simple Looped Network

If we perform the Forward Sweep at all events, three branches D, F, and F composing a
triangle remain untreated. In this stage we can see the feature of the single looped network. When
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we see all junctions located at three vertexes of the triangle, we can find that one already-swept
branch and iwo not-yet-swept branches join at each junction. This kind of junction will be called
junction of Type II here. This is a typical feature of the single looped network. In case of the
complex looped network, on the contrary, there exist some junctions where three not-yet-swept
branches join. Such a junction will be called junction of Type III.

Although all branches in a simple looped network are even and we can start calculation
anywhere, we will start from branch A counterclockwise. Let Np mesh points exists in the branch
D and let all mesh points be numbered also counterclockwise. We suppose here that Aup 5 and
Ahp 2 can be expressed by using Aup; and Ahp ; as follows

Aupa = WlD‘zAub,l +W2pAhp 1 +W3ps

Ahpg = YID’gAﬂD,l + Y2D|';>Ahp,1 +Y¥3p.2

where Aup 1, Ahp,1, Aup,z and Ahp 5 are differences between temporary and revised solutions
on mesh points 1 and 2, respectively.

The above expressions are always possible, because there are two linear equations approximat-
ing continuity and movement equations against four unknowns; Aup 1, Ahp 1, Aupz and Ahp 2
on two mesh points 1 and 2, and Aup o or Ahp ; can be eliminated from two equations each other.
The same treatment is also poséible for four unknowns; Aup 2, Ahp g, Aup 3 and Ahp 3 on mesh
points 2 and 3, and Aups and Ahp g are expressed by Aups and Ahpg. as two unknowns
Aup s and Ahp, are already expressed by Aup i and Ahp, finally Aup sz and Ahp 3 can be
expressed by Aup,; and Akp ;. By iterating this procedure, we can obtain following relation on
each mesh point in the branch D

AuD'_,- = WlD,J-AuD,1 + WZD‘J-AhD‘l +Wip ; (J' =1, ND)
Ahp;=Y1lp;Aup 1+ Y2p,;8hp1 +Y3p ; (j' = l,ND)

Through the above process resembling to the Forward Sweep, two unknowns Aup n, and Ahp N,
at the end of the branch can be expressed by two unknowns Aup; and Ahp; at another end
of the branch. At the junction where branches B, D, and F join, we have already known the
information about Aug y, and Ahg ., as shown below

ADug y, =Wp wy Ahg ny + YN, for Branch B.

Moreover, we have other three equations showing continuity and energy relations among three
branches B, D, and E. Three equations are the same with those shown for a junction of Type
I, and are approximated by three linear equations shown before. Now as we have five equations
against eight unknowns, five unknowns can be eliminated. Then we can express Aug; and Ahg i,
and further Augz; and Ahg ; (f = 2, Ng) in the branch E by two unknowns Aup; and Ahp 1
in the same way. For unknowns on the branch F, we can also express them by Aup ; and Ahkp 3,
and finally two unknowns Aup i, and Ahp 1, on the branch D can be expressed by themselves as
shown below.

Aup =WlpgrlAup 1 +W2pgrlhp 1+ Wiper
Ahpy=YlpgrAup1+Y2pprAhp, + ¥Y3pgr.

As above two equations have only two unknowns Aup ; and Ahp, they can be solved. Once
we get the values of Aup; and Ahp ;, all other unknowns are solved because they are already
expressed by Aup ; and Ahp ;.
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In case of the simple looped network, we can utilize similar procedure to the Forward Sweep
and we need not deal with a matrix, which saves computational time considerably. After solving
the unknowns in branches D, E, and F which compose a loop, unknowns in other branches A, B,
and ' can be solved by the ordinary Back Sweep.

Complex Looped Network

As an example, we consider a looped network system which consmts of seven branches as

shown in Fig.5. Two branches A and B have their own ends to which boundary conditions are

given, and we can conduct the Forward Sweep for these branches

Branch Set(3) Junction of Type JL
Boundsry Boundsry
condition _ . condition
& _‘ Y |l A o .
Branch Set(1) / TR \Branc/: Sef (2)

Junction of Type Il

Fig. 5. Complex looped network

We cannot use the quite same procedure used for the simple looped network, because there
are two junctions of Type III here. Two junctions of branches C, F, and (G and of branches D, E,
and G are Type IIL Ot.her two junctions of branches A, C, and D and of branches B, E, and F
are Type II.

We need to consider some branch set here. A branch set consists of a single or a series of
branches connecting two junctions of Type IIL. There exist three branch sets; set (1) composed
of branches € and D, set (2) composed of branches E and F, and set (3) composed of branch
G. All unknowns Aux, ; and Ahyx ; in branch X in a certain branch set (i) can be expressed by
two unknowns Aug,; and Ahg; in top branch § in the same branch set (i). This sitnation is
similar to that of the simple looped network except that first two unknowns cannot be expressed
by themselves. Through this procedure, last two unknowns Aur . and Ahr y, can be expressed
by first two unknowns Aug, and Ahg1 as shown below

Aur n, = WlAug + Wz(;)Ahs,l + W3y
Ahr N, = Y1(jnAug; + YZ(,-)Ahs,l + Y3y

where the branch § is located at the top end, and the branch T at the tail end in the branch set
(i)-

What is important here is that all unknowns in a branch set can be expressed only by first two
unknowns. In other words, there are only two independent unknowns in a branch set, As there
are three branch sets, in this example, the total number of unknowns is six. The total number of
equations is also six, because there are two junctions of Type III, where six equations, two energy
and one continuity equations on each junction, can be obtained. As the ratio of Type III’s junction
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number to branch set number is always 2 : 3 in a complex looped network, we can always obtain
same number of equatzons with that of unknowns,

Six unknowns, In this example, cannot be solved effectively without using matrix calculation

like the Gauss’ Elimination Method. In this method, a matrix whose components are cceﬂicxents"
of simultaneous linear equations is transformed to a triangular matrix (forward steps), and un-

knowns are solved successively from bottom to top (backward steps). Although this method is

very effective, its calculation time is approximately proportional to the third power of unknowns’

number. As this part may be the most time-consuming in numerical calculation process, we should
not adopt such a method as uses four unknowns in a branch set. In the above example, Aur y,
and Ahp y, should not be used as unknowns, but they should be used by the forms expressed in
advance by Aug; and Ahgi. Once six unknowns are solved by the Gauss’ Elimination Method,
we can solve easily all other unknowns in branch sets. just like we did in the case of the simple
looped network. Other branches A and B are solved by the Backward Sweep as well.

Practical application of computation method

Under developed technique, a practical application of computdtion and its calibration have
been carried out in South Ninh Binh irrigation system. The system is sketched as shown in the
Fig.6
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Fig. 6. Measurement stations in the South Ninh Binh river system
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For computational purpose the system then was schematized that comprises of 7 looped cycles
as shown in the Fig.7
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Fig. 7. The schematization of the river network

The computation was carried out at the Water Engineering and Management Program, School
of Civil Engineering, Asian Institute of Technology, Bankok Thailand. By comparison between
observed and computed results, the agreement was considered satisfactory . See figures 8 below
that shows the comparison between observed and computed result at some important locations.
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Conclusions

Through this study followings are achieved. Firstly, it was found that the looped networks
should be classified into simple and complex channel networks according to the type of junction.
Secondly, it was also showed that the numerous unknowns in branches composing loops were
reduced to a minimum number by the devised procedure similar to the Forward Sweep, where two
top unknowns-is-a group of branches were used to express other unknowns in the same group.

Finally, we could present two ways to solve unknowns for both cases. In'¢ase of the simple looped -~

network, number of unknowns was reduced to only two, and they could be solved without using
matrix calculation. In case of the complex looped network, it was decomposed into branch sets
and the number of unknowns was reduced to twice of branch set number. They could be solved
by a matrix calculation such as the Gauss’ Elimination Method. Through the above process we
succeeded in developing an effective method applicable to any type of channel network. A case
study was done with satisfactory result.
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vE PHUONG PHAP TINH TOAN DONG KHONG ON DINH
BANG 50 DO PREISSMAN CHO HE THONG LONG DAN
CO LIEN KET PHUC TAP

Nhitu ddng bing cda khu vyc chiu A & vung ha du céic sdng 16n 13 cdc ving canh tic la
nwéc, tuy nhién ching thwdmg bi ngip lut vi van 48 tigu dng & da.y thwing rit khé khin. & cic
khu vic ndy cidc song nhdnh vi céc kénh tidu thwiémg tac nén cic mang lwdi trong d6 dong chiy
bi 4nh hudng béi thiy tridu v khéng déng nhit. DE thidt k€ cic cdng trinh chdng li va néng cao
" hidu qui hé théng tiéu, cin phdi c6 k¥ thuit du bio vi tinh toin chinh x4ic méc nwéc trong sdng
kénh.

Trong bai bdo ndy chiing t&i x3y dung mdt thuit todn cé thé giki mét céch hidu qui hé phwong
trinh didu khién mé t4 dong chiy khéng &n dinh trong hé thdng kénh hé. K§ thuit tinh todn dya
trén nguyén tic sai phin hitu han in theo so &5 do Preissmann d2 nghi.

K# thuit khir dudi di dwoc phdt trién d€ gidi bai todn kénh don. Kénh phin nhanh don gidn
di dwgc d8 cip vi sau d6 trinh by phwong phip tinh todn cho trwdng hop hé thdng kénh lién
k&t phirc tap a8 gidm thidu t3i da kh&i lwong tinh todn vi bd nhé mdy tinh (trudmg hop looped
don gidn vi looped phitc tap). Nghién céu ciing s& gi6i thidu tidu chuin phin loai lwéi kénh vi
c4c chi din trong cic trwomg hop 4p dung.
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