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Introduction

In nonlinear systems, the first order of smallness terms of quadratic nonlinearity and the
forced excitation with nonresonance frequency and the second order of smallness terms of linear
friction, cubic nonlinearity, forced and parametric excitation with resonance frequencies have no
effect on the oscillation in the first approximation. However, they do interact one with another in
the second approximation and new nonlinear phenomena occur. The study of these phenomena,
using the asymptotic method of nonlinear mechanics [1] with a digital computer, is our aim.

1. Interaction between the elements of quadratic nonlinearity and forced excitation
themselves

Let us consider a nonlinear system governed by the differential equation
i+ z = g[as® + gcos 2p(r)] — 2(2hz + f2°), (1.1)

where the dots indicate differentiation with respect to time, o, ¢, b and § are constants, v = =t
and ¢ is a small dimensionless parameter characterizing the smallness of the terms behind it. The
parameter s is introduced artificially and used as a book-keeping device and will be set equal
to unity in the final solution. The quadratic term may be due to curvature or and asymmetric
material nonlinearity. The function ¢(7) is supposed to be a form

% =u(r), r=et, (12)
where (1) is close to the natural frequency i.e. to unity:
Vi (r) = 1+ 2A(r). (1.3)
The equation (1.1) can be rewritten as:
| &+ 1 (r)z = e[as® + gcos 20(r)] — (-Az + 2he + pz®). (1.4)
A solution of this equation is sought by using the asymptotic method of nonlinear oscillation
. g =acosd + cuy{a, ¥,0) + e2ux{a, ¥, 0) +*..., 8=p+4, - (1.5)
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:? eA;{a, ?1,0) +e2Ag{a, ¥) +..., %‘f— = eBi{a,¥) + ¢*Bala, ¥) +...,

where u;(a, ¥, ) are periodic functions with period 27 with respect to both variables ¢ and ¢ and
do not contain the first harmonics sin#, cos 8. The functions A;(a, ¥), Bi(e, ¥} are periodic with
respect to the variable . These functions will be determined in the process of approximation
calculations.

Substituting the expressions (1.5) into equation (1.4) and comparing the coefficients of ! we
obtain

- .
—2u(r}A1sin 6 — 2av(r) By cosd + v (r)( 59z T u1) = aa?cos?  + gcos 2p(r). (1.8)
Comparing the harmonics in (1.6) gives:
= Bl - 0, (17)
Uy = _aa?_ ———(aa® + 2¢ cos 2} cos 26 — —— sin 29 cos 26 (1.8)
Y 2(r) 6,,2( ) 83(r) ' ‘
Comparing th:e coefficients of &2 in (1.4) we get
— 2v(r) Az sin 6 — 2ev(r) Bz cos § + vz(‘r}( Y LI ug)
= 2aau; cos @ + Aacos § + 2havsind — fa® cos® 4, (1.9)
which gives
—2v(r)d; = Zhu(r)a ™ 2( )asmhb,
5aZ 3 (1.10)

—2av{r)B; = A+ ( ﬂ) a® - ™ 2( )acos 2.

63(r) 4

So, in the second approximation we have

ad? 1, , q._. :
z=gqgcosd + S[T - E{aa + 2g cos 2¢) cos 26 — ¢ &N 2¢sin 29], (1.11)
d :
2 =e?[-ho+ SLrasinzy], .
dt v{7) (1.12)
dp _ A a7 s, o9 '
I T w ot [v r)a + ﬁv(r)acosmﬁ],
where .
3 5
7= ?ﬁ - -%— , v{r)=wotept, 1gml (1.13)

Stationary Oscillation:

Supposing that v{r} = w = const and considering the stationary oscillation with constant
amplitude ¢ and phase ¢ we have:

7 sin 2¢ = hw, 249 cos 29 = a_ ~va?, a#0. (1.14)
| 6 8 2
Eliminating the phase ¥ we get:
W(a® w) =0, {1.15)
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. - A 2
W(a®,w) = zﬁq +(-§-—"rag) + kw3, A =w? - 1m2w 1), 'y=—ﬁ——-— (1.16)

From equation (1.15) it follows that:

, e = . _
et mw— 14y —— — hZw? . (1.17)
36
The dependence of the amplitude a on the external frequency w is presented in figure 1 for the
parameters: £2aq = 0.063, e?h = 0.01, e?y = 0.08.

The stability of nontrivial stationary solutions (a # 0) of the equation (1.12) when w is constant
can be studied by using the corresponding variational equations, which lead to the condition: [1]
aw
— > 0. 1.18
300 (1.18)
Because function W {1.18) is positive outside and negative inside the resonance curve, the stable
branch of the resonance curve is the upper branch, which corresponds to the upper sign before the
radical in (1.17). Thus, between the two forms of oscillations corresponding to definite values of
w, the form with large amplitude is stable and the form with small amplitude is unstable.
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Fig. 1

Following Chapter 4 of [1], the trivial solution a = 0 of the equation (1.12) is stable if the
value w does not lie in that interval of the axis w, from which the resonance curve is rising. In
figure 1 the stable branches are shown by heavy lines, while the unstable ones are shown by dotted
lines.

~ The passage of the system under consideration through resonance when v(r) is not a constant,
but changes by the law: v(r) = vo+eut, can be examined by integration of the diﬂ'erential equations
(1 12}, The parameters are chosen as to = 0, ag = 0.009, ¥ = 0, 2h = 0.001, 2y = 0.01,
g%aq = —0.024, 1p = 1, p = 1073 (curve 1, Fig.2); u = 2 1075 (curve 2, Fig.2); p = ---10"5
(curve 1, Fig.3); pp = —2 - 107® {curve 2, Fig.3).
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From the expression (1.12) and (1.13) one can see that the quadratic nonlinearity (o} is always
to softenize the system under consideration regardless of the sign of a. Moreover, two elements
characterizing quadratic nonlinearity az® and forced excitation gcos 2¢(r) combine together and
act just like a parametric excitation with an intensity aq. '

The system of equations {1.12) has a trivial solution a = 0, which corresponds to a pure forced
oscillation under the action of an external excitation &g cos 2¢:

z= —eg- cos 2. (1.19)

2. Interaction between the elements of quadratic nonlinearity and forced excita-
tions

The system under consideration in this paragraph is governed by d.e.
i+ wlz = ear® + gcos2wt) + [Az — 2hi ~ f2° + reos(wi — )], w?=1+A.  (2.1)

Here, the nonresonance forced excitation (g) is of the first order of smallness, while the resonance
forced excitation (r) is of second order of smallness. These excitations have no effect on the oscil-
lation in the first approximation, but they interact one with another in the second approximation.
Similarly to the previous paragraph, the solution of the equation (2.1) is found in the series (1.5).
The equations (1.11)-(1.13)} now take the form:

aa? 1, , : q . .

x=acos6‘+e[-2——g(aa +2qc0321ﬁ)cos29—Esm2¢sm29], A=wt+ 9, (2.2)
da &° o ag .
5= E[_ 2haw + 3 ¢sin 21p — rein(y + n)], 23)
aﬂzﬁ[—Aa+2 a3+9—gacos2xb—-rcos(¢+ ]]
dt 2w Y 3 ek
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The stationary solutions of equations (2.3} are determined by the relations:

Jo=0, =0
fo = 2hwa — %I-asin 2¢ + rainf{y +1n),

go = Aa— 2-ya,3: C—;ﬂa cos 29 + reos(y + 1),

or equivalently:
Jocosy —gosiny =0, fosing +gpcosyy =0,

From here we obtain

2hwa cos — (Aa — 21:13 + %—q-d) siny +rsinn =0, .
(2.4)

2hwasiny + (Aa — 2va® — %g-a) cosf +reosn =0,
Note: The equations {2.4) belong to the form
Ysiny + Zcosyp = C. (1)
The functions sin¢ and cos v satisfy the relationship
sin® ¢ + cos® ¢ = L. (2)
From equaiion (1) we have
Y2sin® 9 = C% + Z%cos® ¢ — 22C cos . (3)

Eliminating sin ¢ between last two equatioﬁs we get
(Y2 + Z%)cos® p - 2ZCcosp + C? - Y? = 0.

From here we obtain

cos ¢ = ——1——2—2[20:!: VZ3C? — (Y2 + Z2)(C? - Yﬂ)].

Y2+

Therefore, the condition for reality of cos is that the under radical expression should not be
negative: ) ‘
Y34+ Z2>0% (2.5)

Applying the condition (2.5} to equations (2.4) we have '

a2{4h2w2 + (A —2va® + ?)2} b r? sin? n, | (2.6)
u:t”{‘ihzw2 + (A — 27a® - ?)2} > 12 cos? 1. (2.7)

System without friction (h = 0)
In this case equations (2.4) take the form
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[27&2 - (A - %’i)]acosqb = rcos .

[2"7(12 - (A.+ C—lg)]asinxb = —rsin?, 2.4

a) If 24a® — (A + ?) #0 and 2ya?— (A - C—?) # 0 then eliminating the phase 4 from (2.8}
we get the equation of the resonance curve Cy:

W (w?,a?) = 0. | (2.9)

where ) .2 2 o2
W(cu"’,az) — resin” n 4+ cos” n — a2, {2.10)

= (e ST - (o=

b) If 2va® — (A + %2) = 0, i.e. if we have the resonance curve Cy:

@
2'}42=w2——1+-§q~ . (2.11)
then
. . 2aq
o.a.8iny = —rsiny, —3—0.(:031!: = rcosy.

From here we obtain:

2
2 9r

n

+3
gsinp=0=>n=0,m cosn==1=¢ =arccos 2aq:1 = a’ > i (2.12)
- c) K 2va® — ( - %) =0, i.e. if we have the resonance curve Cj:
2va? =w? —1— %‘i , (2.13)
then 9
0.acosy =rcosy, —‘;‘iasimp = rsin".
From here we obtain: -
cosn=0=>p=— 3. sing = £1 => ¢ = tarcsin =>a2>. 9r° - (2.14)
"= "=g g = B 2aqa T 4a242 )
So, if =0, -g-, , -3-5, the resonance curves (5, Cy do not exist. If # = 0, «, then beside the
, 2
resonance curve C; there is still semi-siraight line C3 in the (a2, w?)-plane with a® > Toip
T 3 o
=5 __21_1' then beside the resonance curve O there is still semi-straight line Cs in the (a%, w?)-
plane with a2 > or? .
- 4azq2

System with friction (h 5 0)

Solving the system of equations (2.4) relatively sin ¥ and cos ¢ we have:

16



a) For the case D # 0: D
asinyg = —, 5 (2.15)
where
D =4k + (A - 29a2)? - 21

D= -r[zm sin 1 + (A — 294 + 33?) cos n}, (2.16)

Dy = —r[Zhw cosn — (A - 24a? ~ %q_) sinn]. '
Elimiating v from (2.15) gives the following equation for amplitude (a) and frequency (w)
DZ 4+ D2
b} If D =0 we have
2 ¢
e =uw® -1+ 5 " 4w2h2 | (2.18)
and sin 4, cos y exist only when Dy = D = 0, or equivalently
Dicosn— Dosinn =0, Dysing+ Docosn=0.
From here we obtain:
2qa? =w? -1+ 2 cos 2n, wWe= — 2 gin 27. (2.19)
3 6h
The formula (2.6} with taking into account D = 0 and ({2.19) gives a restriction to a.:
. 9,,.2
12— .20

3. Interaction of the elements of first degree of smallness quadratic nonlinearity
and forced excitation with the self-excitation of second degree of smallness

Let us consider a nonlinear system described by the following differential equation:

£+ w?r = e{az?® + gcos 2wt) 4 2 [Az +D(1- 622 — ﬂsx],
w? =1-¢&%A.

(3.1)

Where D, § are positive constants. The other parameters are the same as in the previous para-
graphs.

The approximate solution of the equation (3.1} will be found in the form (2.2) with the
amplitude (a) and phase (1) satisfying the relations:

da €2 § N ag .

@ (-g) Feen],
d &2 a3 ag ‘ )
a—-—t--vz—;(—-ﬁa-i—z'ya +-3—ac_0821,b),
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where
_ 38 5af

8 12

Equation (3.2) have a trivial solution @ = 0. The non-trivial (a # 0) stationary amplitude aq
and phase g are determined from the equations: '

j.igsinmbo = —D“’(l = %ag),

3 (3.3)
% cos 24pp = A — 2ya?.
Eliminating the phase 1y gives:
W(ao,w?) =0, (3.4)
2 ‘ 212 2 2 § 2\2 _ o?¢*

W{ag,w?) = (A - 2va3)* + DPw (1 - Zag) - (3.5)

From the last two equations we obtain appl_'oxima.tely

2.2 2 -

w? =1+ 2¢*ya} :!:ez\/—q—é-l— - D2 (1— gaﬁ) : (3.6)

This formula is plotted in the figure 4 for the parameters: e2D = 103, § = 40, s? =10"? and
g%y = —0.005 (curve 1}, &%y = 0.01 (curve 2) and £y = 0.025 (curve 3)
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Denoting the right hand sides of the equations (3.2) by X and Y, respectively, we have:

aX 2 axX 2
(F2)o= 700 (55), = THa-2ad) (5.7

(52)s="ooete (59), = oo (1~ 4o,
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where the subscript “0” means that the derivatives are calculated at stationary values ag, o (3.3).
The stability conditions of stationary oscillations are

ag (%)0 + (%)0 = ezagD(l — %ag) < 0,

- 4 ) .
), 60,3, B

- (38)

Hence ag > 0, the stability conditions take the form

2 W
2 2 -
%> 3, 302 > 0. (3.9)

To study the stability of the zero solution a = 0 of equations {3.2) we introduce the variable

u, v connected with ¢ and ¢ by the relations: ;

u=acosy¥, v=asny. (3.10)
We have J 2
a5 '
-d—t—zw[Dwu-F(A+ 3)u]+... (5.11)
do_ |

il G S LR

where the non-written terms contain % and v with higher degrees of smallness. The originu=v =0
{a = 0) of the system of equations (3.11} is unstable, because the characteristic equation of the
linear terms of (3.11) has the roots with positive real part.

In the figure 4 the stable branches of resonance curves are shown by heavy lines, while the
unstable ones-by dotted lines.

4. Conclusion -

In the nonlinear system under consideration, the elements characterizing the first degree of
smallness quadratic nonlinearity and nonresonance forced excitation (for brief, N-F-elements) have
no effect on the oscillation in the first approximation. However, they interact one with another in
the second approximation and appear as a parametric excitation with modulation of the product of
their intensity (o, q). This means that each element {« and ¢) standing alone has no effect on the
system and these clements have equal role. The resonance curve (Fig. 1) is bent to the right and
cuts the frequency-axis at two points. This curve is typical for a nonlinear system with parametric
. excitation. The passage of the system under consideration through resonance has been examined
(Fig. 2, 3).

In the second paragraph their interaction between these elements and the second degree of
smallness resonance forced excitation has been studied. Some typical results for the interaction
between parametric and forced excitations have been obtained. The interaction between N-F-
elements and self-excitation is given in the paragraph 3. The resonance curves have oval forms
{Fig.4) and are bent either to the left or. to the right, depending on the sign of the parameter -.
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TUONG TAGC CUA CAC PHAN T DAC TRUNG CHO PHI TUYEN CAP HAI
vA KicH PONG CUONG BUC V&I CAC KICH PONG LOAI KHAC

Trong céc hé phi tuyén, nhitng s8 hang phi tuyén cip hai v3 kich ddng cwong birc khéng céng

hwéng c¢é bic bé € va cac 88 hang ma sit tuyén tinh, phi tuyén cip ba, cic kich déng théng s&
vi cudng bic cdng hwdng cb bic bé £2 3é khéng cb tdc dung trong x4p xi thi nhit, song ching
tdc ddng qua lai véi nhau trong xdp xi thi hai va nhitng hién twong phi tuyén méi s&€ xuft hidn.
Viéc nghién ctru cic hién twong ndy I3 myc tidu cla bai bde. Phuong phdp tiém cin cxia co hoc
phi tuyé&n k& hop véi miy tinh di cho phép gidi bai todn djt ra.
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