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FREE CONVECTION FLOW IN A VERTICAL 
ANNULUS WITH POWER LAW FLUID 

1. Introduction 

NGO HUY CAN, VU DUY QUANG 
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Institute of Mechanics, Hanoi, Vietnam 

In [1, 2] free convection flow in a vertical plate channel of finite height without and with wall 
thickness with power law fluid is investigated. 

In [3] the flow in vertical cylinder is considered. 

In this paper we consider free convection fiow in a vertical annulus.offinite height with different 
external temperatures (see Fig.1). The problem is solved by a finite difference scheme. The 
calculation result when the. height is much bigger than the diametter is compared with asymptotic 
solution. When the radii are very big the calculation results give good coincidence with the ones 
of plate channel in [1, 2]. 

2. Basic equations and establishing the problem 

In Cylindrical coordinates the problem is governed by following equations in dimensionless 
form (see [2, 3J). 

Continuity equation: 
8 Fiir 8FVz --+--=0. ar az 

Momentum equation: 

_ av, _ av, dp 1 a __ 
v, a- +v, a- =-d_+=a_(r~v,,,)+TG, •. 

Energy equation: 

r z z r r 

_ aT _ aT 1 a (_aT) _, 
Vr ar+vr ar =Farrar ·Prg J 

1 a (_aT) (D)•a•T, 
i ar r ar + H azz = 0• 

for r1 :5 r ::::; r2 and r3 :5 r :5 r 4, 

where H - channel height; D - channel width = r3 - r2; 
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(2.4) 



fJ .. apparent viscosity, T00 .. temperature of surroundings, Te 1 ~ given temperature at r = r1, Te 2 

_ given temperature at r = r4, T, - temperature inside the channel walls, p1 = p(z) - p(O) + gpz, 

Pr , Grg .. generalized Prandtl and Grashof number, vk .. kinematic viscosity, p .. density, Cp -
sp:cific heat coefficient, A - thermal conductivity, g - acceleration of gravity, {3 ~ thermal expansion 

coefficient. 

Boundary conditions 

At r = r2 

At r = '• 

lir(r3 ,zJ. = v.(r.,z) = o, T,(ra,z) = T(r.,z), 

At r = r1 T1(r1,z) = T,, ~ 1. 

At r = '• T1(r,z) = T,,;::: 1. 

At z=O p1(0) =li,(r,O)=T(r,O)=O. 

v~ (r, 0) = v~o 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

At z = 1 p1(1) = 0. (2.10) 

Because of smallness of Din comparison with H: (D/H) < 1 the second term in (2.4) can 
be negleted. This leads to the following equation. 

:,(r~;)=o, r,~r~r2 and '•~'~'•· 
In addition, from the continuity equation and condition 

it follows 

v,(r2 , z) = v,(r., z) = o 

,, 

!-- 1 -2 -2 Vz rdr = 2Vzo(ra - r2 ). 
r, 

(2.11) 

(2.12) 

The unknowns of system (2.1) - (2.7) are li., li., Tz, T,, p, Vzo· Two qualities of particular 
interest are the average velocity along the channel liz, and the total heat transfer from the wall Q, 
which is characterized by average Nusselt number NuD· 

3. Numerical solutions 

Further we'll drop all the signs •-• for convenience. First, we can exclude T1 by integrating 
(2.1) combining with boundary conditions in (2.5) + (2.8) and we get following boundary conditions 
forT 

aT 
W',,(T-T,,)=a;: at r=r2, 

aT '11,, (T,, - T) = a;: at r = r 3 , 
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where 
A1 A1 

~ •• = In( I l ; ~ .• = ( I l r2 r2 r1 rsln r, rs 

Affter T founded T1 can be calculated as 

T1 = 
T(r3 , z)- T,, lri{ ) T. ~ T(r3, z)- T,, lri.·( ) 

r + + r.. for r. <_ r <_ '• 
In(r,lr•) '' lri(r•l••) • 

and 
T(r2 , z) - T,, ( ) T(r2 , z) - T,, ( ) 

T, = lri{rolr,) l1l r + T,, - lri(ralr,) l1l r1 for r1 :$ r:::; r2 

(2.1)-(2.3), {2.10), (2.12), {3.1) is a closed system for v., v., T, p', v,0 • We solve this system by a 
finite difference method. The finite difference equations are (see Fig. 2) 

r, 
'i<JZ<§<~ 
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Fig.2 

( •+1 );+1 ( •+1 );+1 ( •+1 );+1 ( •+1 )i+1 ( )i ( )i r v r k+l - r v r k r V z k+ 1 + r v % k - rvz k+ 1 - rvz k 
•r + • =0 ,. 2,.z (3.2) 

(•+1 )i+l ( )i ('+1 )i+l ('+1 )i+1 ('+1 ')i+1 , . 
( ' )i+l t1 z k - tlz 1; (' )i+1 V r 1;+1 - V r k 1 _ P - P 3 G ('T1);+t 
v, k t.z + v, k 2t.r - t.z + rg k 

U+1 (('+1 )i+l _ ('+1 )i+l) _ (')i+1 (('+1 )i+1 _ ('+1 );+') 
'lk+(1/2) v • k+1 v • k ~ k-(1/2) v • k v • k-1 

+ (t.r)• (3.3) 

•+l i+l •+1 i ('+1)i+1 ("+1 i+1 

(
• )i+1 ( T )k - ( T )k + (' )i+1 T H1- T )k-1 
V: k . ll.z Vr k 2/.l.r = 

(•+l)i+l - ('+l)i+l ('+1)i+l 
-1 T k+l 2 T k + T k-1 

= P,g (t.r)2 

where s - iteration number, ~k+(1/2)o ~k-(1/2) is taken equal to 

(3.4) 

I (v,)k+l :r(v,)k 1,n-1. 
"" This is a non-linear system. The truncation errors is of o(t.z, t.r2). 
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We solve this system by iterating on index s. Let's assume that all quantities at j-row and 
quantities with index s at j + 1-row are known. From {3.3), {3.4) using the Thomas algorithm we 
can obtain (drop index s + 1 and j + 1 at v, and p' for convenience). 

1• 
' (v,)N = 0 (3.5) 

(3.6) 
r, 

(3.5), (3.6) are N + 1 equations for (N + 1) unknowns p', (v,)t, (v,) 2, ... ,(v,)N" We solve this 
system as follows: 

Let Pt( p2, Pt # P2 • two arbitrary values. Using the Thomas algorithm we can find two 
solutione! v/}, vi2

): 

of system (3.5). Because of the linearity <>Pt + {1- a)p2, av~1 ) + (1- a)v~2); Va are solutions of 
(3.5), too. Substitution iuto (3.6) gives 

r, 

~Vzo(rs + r2) -/ rv12ldr 

Q = ---:;,.-----'-'"-' --­
" I r(vi1

) - vi2l)dr 

" 

4. Discussion of the results 

A. The case without channel thickness 

a. Asymptotic solution. When (H/ D) ---> oo then far from the entrance the problem is one· 
dimensional and we can find the solution easily: 

where 

T=am(r)+b (4.1) 
Te,-Tel () 

a= m(rs/r.) 
4

·
2 

b=T,,m(r3)-T,,m(rz) (4.3) 
ln(rs/rz) 

r r 

Vz = (G,9 Jb*l/2) 1insignlb*l/lwl1/n signlwldr = (G,9 Ib*l/2) 1insignib*l/ Wdr (4.4) 
r, 

b* = b- 0.5a 

w(r) = -r- (a/b*)r m (r) + (c/r) 

W = lwll/n sign (w) 
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. ~ 

Constant c is chosen to satisfy the condition J W dr = 0 ,, 

if T,, = T., (symmetric external temperatures) then T,, = T,, = 1; a= 0; b = 1 

(4.1) becomes: T = 1 

(4.6) becomes: w = (c/r) - r 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

For comparison we take Prg = 100; Grg = 4. 795 x u)-2; n = 0.66; .:\ 1 = 4; r1 = 1; Te 2 = 1.5; 
T., =0.5. 

The formulae (4.7), (4.8) give 

Numerical results are 

Vzo = 5.77 X w-•; N.D = 3.19 X 10-2 

Vzo = 5.70 X w-•; N.D = 3.15 X 10-2 

The differences are smaller 1.2% 

b. Numerical example. The fluid under consideration is a 1000 wppm solution of water and 
CMC (carboxy methyl cellulose). The input data are as follows (with dimensions) (see [2)) 

T= = 15°C 

D=2cm 

Cp = 4.18 x 103jfkgK 

f3 = 1.8 X 10-4 1/K 

The calculation results are 

T,, = 20'C 

H= 20cm 

-' = 0.597W/mK 

n = 0.66 

Vzo = 4.34 X 10-2 (that's 1.36 X 10-1cm/s) 

NuD = 4.18 

The distribution ofT, v, are shown in Fig. 3, 4 
U.Qo 

f. Z:: 2
1
5.10-SH 

2. Z: O.!iH 

3. Z: H 

Channel WitlfiJ 
aoo~..,~~~~~~-J J/z ehsfri/;ufion /IS r ¢:::0 

Fig.3 
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T,, = 30'C 

p = 1000kg/m3 

Vk = 7.35 X 10-8 m2 / s2-n 
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f. Z: 2.!i.IO-s;, 

2.z =O.!iH 

a oo ll-::::-:~::::::::::..-~.lJ 
T disfribvlion l(r r tf'= o 

Fig.4 



To compare with plate channel we take r, = 5000 

Te
1 

= Te, our results are: Vzo = 4.12 x 10-2 . 

Nun = 3.39. The difference from [2) is 8.4% 

B. The case with wall thickness 

a. Asymptotic solution. The one - dimensional solution are 

T=aln(r)+b 

where 

The formulae for V.ao, NuD remain the same as above. 

b. Numerical example. Let 8- the dimensionless thickness (8 = r 2 - r 1 = r4- r 3 ) 

Take 8 = 0.125 and 8 = 0.025. The other data are the same. Res11lts: 

v,o = 4.32 X 10-2
; N.n = 4.11 for 8 = 0.125 

The distribution of v., Tis shown in Fig. 5, 6 

V,o = 4.32 X 10-2; Nun = 4. 70 for 8 = 0.025 

if r 1 = 5000, T., = Te, then Vza = 3.73 x 10-2 

Nun = 3.45. The difference from [1) for plate channel are 1.4% 

f. Z = 2.5,10-SH 

2. z = ll.!iH 

/ 3. Z= H 

0.~~~----~------~--~ 
Vz disfribulion J.lr r 6 = o 

Fig.5 
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f. Z: 2.S• to·>H 

2. z = O.!fH 

.J. Z :H 

Fig.6 



5. Conclusion 

More detailed calculation leads to following conclusions: 

+ Influence of radius value on convection Bow are very small so convection flow in plate channel 
and in annulus with same width is almost the same. 

+ The wall thickness reduce the convection intensity 

+ The convection (presented by Vzo and NuD) in case of asymmetric external temperatures 
is stronger than in case of symmetric external temperatures with the same average. 

This paper is completed with financial support from the National Basic Research Program of 
Vietnam in Natural sciences. 
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CHUvtN DQNG DOl LUU NHI~T TV DO TRONG KHE TRV 
TRANG DUNG CDA CHAT LONG QUY LU4T MU 

Trong b1Li baa cac tac gil. nghien c.ru chuy~n d(ing dili hru nhi~t tl)' do cda chl(t 16ng quy lu~t 
mii trong kenh n!m giila hal ilng tl'1! thing dhg, co chi~u cao hilu h~n. Nhi~t d9 hai thanh cho 
tnrac vi. khac nhau. Bioi toan dU"\'C gi/oi bhg sa d~ sal phan hilu h~. K~t qui. tinh toan dU"qc so 
sanh v6o:i nghi~m ti~m c~n va tnr<rng h9'P kenh phing. Co phan tich i.nh h.Wng cda ban kinh tr'!­
ciing nh11' b~ day thl.nh dil'n dong dili !U"U. 
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