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1. Introduction

In [1, 2] free convection flow in a vertical plate channel of finite height without and with wall

thickness with power law flaid is investigated.

In [3] the flow in vertical cylinder is considered.

In this paper we consider free convection flow in a vertical annulus of finite height with different
external temperatures (see Fig.1}. The problem is solved by a finite difference scheme. The
calculation result when the height is much bigger than the diametter is compared with asymptotic
solution. When the radii are very big the calculation results give good coincidence with the ones

of plate channel in |1, 2].

2. Basic equations and establishing the problem

In Cylindrical coordinates the problem is governed by following equations in dimensionless

form (see {2, 3]).

Continuity equation:

arv., J8rv
T a:-; = 0. (2.1)
Momentum equation:
_ 9%, _du, dp 18 _ _
Uy 57 + 'z 3% —"’a’%""FaF(rnUz,r)'}'TGrg. (2.2)
Energy equation: ' :
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for iy <r<ry; and ra<r<ry,

where H - channel height; D - channel width = ry — ry;
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7 - apparent viscosity, T - temperature of surroundings, 7,, - given temperature at r = ry, T,
- given temperature at r =ry, Ty - temperature inside the channel walls, p' = p(z) — p(0) + gp=,
P.gy Grg - generalized Prandtl and Grashof number, vg - kinematic viscosity, p - density, Cp -
specific heat coefficient, A - thermal conductivity, g - acceleration of gravity, 8 - thermal expansion
coefficient.

Boundary conditions

AtF=T
_ - ey L 8Ty, _ 8T _ _
T, (F2,2) = 0:(72,2) =0, T,(r2,2) = T(r2,32), /\1—3—_-;(1'3,2) = AE? 2, Z). (2.5)
Atr=T3

- F o o me = 0Ty, ., 0T, _
FT(F3).§)‘= Ez(FS, z} = 01 T]_(r-?nz) = T(r3sz)| A].""a'_Fl'(TS, z) = 35(’"3,2)-‘ (2.6)

At F=7, T\(f,5)=T, <1 (2.7)

At F=7 Ty(r,8) =T, >1 (2.8)

At £=0 p'(0) =% (F,0)=T(F0)=0. - (29)
v (F: 0) = v,

At =1 F'(1)=0. (2.10)

Because of smallness of D in comparison with H: (D/H) < 1 the second term in (2.4) can
be negleted. This leads to the following equation.

%(‘f%—g)= , FI<F<TF and Fs SFET (2.11)

In addition, from the continuity equation and condition
U,.(Fg,—z') = "1.7,.(?3,3) =0

it follows
T3

/'ﬁder = —;—vzo(ﬂ? -F2). (2.12)

r3
The unknowns of system (2.1} - (2.7) are 7y, 0, Tz, Tq, B, va0. Two qualities of particular

interest are the average velocity along the channel U, and the total heat transfer from the wall @,
which is characterized by average Nusselt number N,p.

3. Numerical solutions

> Further we’ll drop all the signs =" for convenience. First, we can exclude Ty by integrating

(2.1) combining with boundary conditions in (2.5) + (2.8) and we get following boundary conditions
forT .

aT
V., (T-T.,)= B at r =g, . :
: o . . . . (3.1) .
We; (Te,‘. - T} = E at r=ra,
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where - AL . A
T pln{rg/r) T T T rgln(re/rs)
Affter T founded T can be ca.lculated as

T(rs,z) —

I., T("3az)
In(re/rs) In{r) +T., +

M : . < < —
T in(re/rs) ln(m) for 73 < < T4

and

T(fzsz) T, _ T(f‘z, z) T., r oL r<rp
-—-—-———ln(m/rl) In(r) + T, _"_m(rg/r In(r;) forr<r<nr;

(2.1)-(2.3), {2.10), {2.12}, (3.1} is a closed system for v,, v,, T, p', v,0. We solve this system by a
finite difference method. The finite difference equations are (see Fig.2)
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Ar

where s - iteration number, Me+(1/2)r Th~(1/2) is taken equal to

(”=)k+1 (U‘)k 1,” -1
Ar

. This is a non-linear system. The truncation errors is of 0(Az, Ar?).
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We solve this system by iterating on index s. Let’s assume that all quantities at j-row and
quantities with index s at j+ 1-row are known. From (3.3), (3.4) using the Thomas algorithm we
¢can obtain (drop index s + 1 and j+ 1 at v; and p' for convenience).

Ac(vs)_ +Br(0:) +Cu(vs) +02' =Dis k=2, N-1 (vg), = (v:),; (v:)y =0 (3.5)

S ,
[rv,,dr = Euzo(rg ~r2) (3.6)
ra
(3.5), (3.6) are N + 1 equations for (N + 1) unknowns p', (vs)1) (vs)g00es(v2) - We solve this
: system as follows:

Let pl( P2, p1 # pa - two arbitrary values. Using the Thomas algorithm we can find two
solutions vz, vz 2),

ugl) - ((vz (1) (U,)(l) -,(Uz)g})), t’,}(’2] = ((u,){z} (u,){z) -;(Uz)ﬁ)),

of system (3.5). Because of the linearity ap; + (1 — a)pz, av; S (1— }vz 2, Ya are solutions of
(3.5}, too. Substitution into (3.8) gives

3
1
Ev,,o(ra +ra) - / ro{2dr

r3
[~ oPyar

ra

4. Discussion of the results

A. The case without channel thickness

a. Asymptotic solution. When (H/D) — co then far from the entrance the problem is one -
dimensional and we can find the solution easily:

T=aln(r)+5 {4.1)
o= Ta =T (4.2)
ln(fa/f'z) ( )
_ Tel].ll (r3) — Te.‘.ln ra
b= In(ra/rs) (43)

vy = (G,g|b’[/2)"/"sign|b*][ lwit/" signjw|dr = (G,g|b‘|/2)1/"sign]b*|[Wd.’r (4.4)
2

where

b =b—0.50 (4.5)
w(r)=—r~(a/t*)rn(r} + {c/r}- _ (4.6)

W = |w|'/™ sign (w)
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“ ) rs
Constant ¢ is chosen to satisfy the condition [ Wdr =0

rz

¥a . - rs3 ’
20 = frv;df: ——(Grglb |/2)sign|t I[r2Wdr (4.7)
- ro4rs rz+r3 :
ra 3
P b* 7
Wup = 20, J5"1/2) 1/ f [(a/5*)r2In(r) + r2Wdr (4.8)
rq + 3

T3

if T,, = T., (symmetric external temperatures) then T,, = T., =1, a=0; b= 1
(4.1) becomes: T=1 ' (4.9
(4.6) becomes: w={e/r)~r (4.10)

For comparison we take Py = 100; G,; = 4.795 X 13‘2; n=0.66; Ay =4; r, =1; T,, = 1.5;
T, = 0.5,

The formulae (4.7), (4.8) give v0 =577x 1074 N,p =3.19x 10~2
Numerical results are vy = 5.70 X 10%; N,p = 3.15 x 1072
The differences are smaller 1.2% '

b. Numerical ezample. The fluid under consideration is a 1000 wppm solution of water and
CMC (carboxy methyl cellulose). The input data are as follows (with dimensions) (see [2])

T.. = 15°C T., = 20°C T., = 30°C

D =2cm , H = 20cm p = 1000kg/m®
Cp=4.18x 10%/kgK A =0.59TW/mK o, = 7.35 % 10~%m?2 /52—
f=18x10"*1/K n=0.66

The calculation results are

va0 = 4.34 x 1072 (that’s 1.36 x 10~ 1cm/s)

Nup = 4.18
The distribution of T, v, are shown in Fig. 3, 4
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To compare with plate channel we take ry = 5000
T., = T., our results are: v, = 4.12 x 102,
N.p = 3.39. The difference from (2] is 8.4%

B. The case with w_al]_thickness .

a. Asymptotic solutton. The one - dimensional solution are
T=aln{r)+?

where

T.,

T, ,
rS‘I’e: rQ‘I’e 1

T, -T. T.,In(rs) — To,In(rz) +

N R A SRS S /
. .
rsW,, r¥,, 8/72 - ra¥,, + raWe, (ra/ra)

The formulae for v,9, N,p remain the same as above,
b. Numerical example. Let § - the dimensionless thickness (6§ = ro — ry = rg — r3)

Take & = 0.125 and § = 0.025. The other data are the same. Results:

vo =4.32% 1072 N,p =411 for &§=0.125

The distribution of v,, T is shown in Fig.5, 6
Vo =432x10"% N,p =470 for §=0.025

if r; = 5000, T., = T, then v, = 3.73 x 1072
N,p = 3.45. The difference from [1] for plate channel are 1.4%
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5. Conclusion

More detailed calculation leads to following conclusions:

+ Influence of radius value on convection flow are very small so convection flow in plate channel
and in annulus with same width is almost the same.

-+ The wall thickness reduce the convection intensity

+ The convection {presented by v, and N, p) in case of asymmetric external temperatures
is stronger than in case of symmietric external temperatures with the same average.

This paper is completed with financial support from the National Basic Research Program of
Vietnam in Natural sciences.
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CHUYEN DONG I LUU NHIET TU DO TRONG KHE TRU
THANG PUNG cUA CHAT LONG QUY LUAT MU

Trong bai bdo cdc tc gid nghién céu chuyén dong d3i lwu nhiét twr do cda chit Mng quy lujt
mi trong kénh nim giita hai 8ng try thing déng, cé chidu cao hitu han. Nhiét & hai thinh cho
trwée va khdc nhan. Bai todn dwoc gidi bing so d5 sai phin hitu han. K& qua tinh todn dwoc so
sénh véi nghiém tiém cin vi trudmg hop kénh phing. Cé phin tich inh hwédng cda bén kinh tru
ciing nhw be day thinh dén dong ddi lun.

10



