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NUMERICAL EVALUATION OF PERIODIC
TRANSVERSE VIBRATION OF ELASTIC
'CONNECTING RODS IN A SIX-LINK MECHANISM

NGUYEN VAN KHANG, VU VAN KHIEM
Hanoi University of Technology

Abstract. Application of the substructure method and d’Alembert's principle to deriving the

differential equation of motion of a six-link mechanism with two elastic connecting rods is presented

In the case of stationary motion, the generalized Ritz's method has been applied to obtain
system of linear differential equations with periodic coefficients. We have written computer programs
to check conditions of dynamic stability and to find periodic solutions of the obtained equations.
Numerical examples are given and from which the effect of elastic factors on articulation reactions

is evaluated.

1. Introduction

Informative development has made the solution of certain mechanism vibration problems
possible. However, it is usual that only natural frequencies or solution in the starting period are
found., The determination of periodic solutions for stationary motion in mechanisms with both
solid and elastic elements is still under investigation [3-8]. '

In (3] we examined the periodic transverse vibration problem of a connecting rod in a four-link
mechanism. The objective in this paper is to extend the method into a mechanism having six links.
The substructure method has been applied to deriving the dynamic equations of the mechanism.
From which equations of transverse vibration of the connecting rods are obtained for the case of
the driving link rotating uniformly. The dynamic stability conditions and periodic solutions of the
mentioned equations are found by using numerical method [1, 2].

2. Derivation of dynamic equations

We consider a six-link mechanism (Fig. 1) moving on the vertical plane, in which the crank
0;A (link 2}, the rocker 0BG (link 4), the rocker O3D (link 6) are solid bodies of weighs Py,
P4, Fs, and centers of mass S, 4, Ss respectively. And 0;8; = g3, 028, = 354, 038 = 36,
L A0182 = &g, £ B0254 = g, FA BOQC = ﬂ4, £ DO3S$ = Xg.

The connecting rods AB (link 3}, CD (link 5) are elastic bodies. Supposing that the connecting
rods are rectilinear and their axes without deformation coincides with the elastic one and that
longitudinal vibration is negligible. The connecting rods AB, CD have area of the cross section

Fy, mass density p;, mass per unit length yu;, elastic modules E;, moment of inertia J;, relative
transverse vibration w;, where j = 3 for the element AB, j = 5 for the element CD.

Fig. 1 shows the mechanism with global axes O;f5. The horiz?_ntal 0, ¢ forms with the
segments 0,03, 0203, 0;A, AB, O3B, 02C, CD, 05D the angles §, 6, w2, @3, ©4, By, ©5, P6
respectively,. We have: .

By = s~ bs. (2.1)
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Given 0105 = £1, 0303 =3, 01A =45, AB =13, 03B = £, 0,C=1;, CD = {5, DO3 = {5.
The kinematics relations between links are:
£ycospy -+ Eycospy — £ycosppy — £y cosf =0,
Lssinps + Lasinpy — £y 9inpy — 4y sind =0,
Z4cosg?4 + €5 cos g — £5 co3 g -4 cosd = 0,
Z,5in By + €5 sin g — £g 8in g — £, sinf = 0.

(2.2)

From (2.2), we can find p; = p; (2) (i = 3,4,5,6). In the stationary regime we have g, = (}¢
(2 is constant), thus ¢; are periodic functions with period 27 /(2.

Fig. 1

Applying the substructure method we divide the mechanism into 5 sub-structures. Each of
the links represents a substructure.

The symbols Jo,, Jo,, Jo, indicate moments of inertia of O, A, O,BC and O3 D with respect
04, Oz, O3 respectively. .

The application of d’Alembert’s principle to each link yields:

For the crank O;A (Fig. 2):

. P, . . :
Xo, = —X4 + Pysingp; — —gzsz [qog cos(ipg — v3 + aa) + G2 sin{p2 — 3 + ag]], (2:3)
P. .2 . . . '
Yo, = —Y4 + Pacospz — ?283 [gag sin(ypg — 3 + a2) — P cos(ipg — o3 + ag)] , (2.4)
My=Jo,@s+ [XA sin(g2 — ps) — ¥ sin(pp ~ m)] +sPycos(pg + e3). (2.5

For the rocker 0;BC (Fig.3):
Xo, = =X cos(ps ~ w3} + Yo sin(ps *.Pa) + Xp + Pysins
- '};isa [ﬁf’i cos(ps — 3 + 0q) + Pasin(ps — o + a4)]s (2.6)
Yo, = =X sin(ps — ©3) ~ Yo cos(ps — g3) + ¥z + Pycos oy

P 2 . .
- ';4'34 [‘Pi sin(ig — @3 4 @4} + B4 cos{ipg — 3 + ‘14)]» (2.7)
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Xosin(?, — os) — Yo cos(B, — ps) + Pyaygcos(ps + aq) + Jo,Pa

Xs=ls 2y sin(py — 3) £4sin{p4 — ©3)

+ Ygcotg(ws — ©3).

(2.8)

For the rocker 03D (Fig. 4):

Xo', = X_p + Pg sin g — *-g—ess [ﬁog COS(fpe -5 + o) + Pe sm(lpa — 5 + ae)] 3

S CPesgcos(pd o) + Jo,Be i vy .
Xp =- — 1=+ Yp cot - ps).
D T sin(ps — o2) D cotg(ps — ps)

For the corinecting

[ ’
Xa=Xp-~ / [#3(g5in s + a32) + c32v34 | ds,
- ] L, 3 o i 0 A ’

£}

Ya=Yp - f (43 (g cos 3 + asy) + cayvay]dzs,
0
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. ey : . ) P . . "
“+ Yo, = Yp + Pecosps '-‘_—;‘86 [‘Pﬁ sin(yps — @5 + ae) + Ps cos(pe — s + 06)] )

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)




[ £
1 "
Y = g{f [P3J3(<P3+ 5a 6t2 d$3+b/ us(gcos w3 + asy)

0
[
+ ¢3yU3y] r3dzy — / [ﬂs(g sin @3 + a34) + Camvsx]wsdifs- (2.14)
0

As for the connecting rod CD, it is seen that the model is completely similar to that of AB
by changing the index 3 into 5 and the letters A, B into C, D respectively. So we have:

A )
Xo=Xp - f [[.65(9' sin ©s + asz) -+ 65mv5a;]d:l:5, (2.15)
0 .
£
Yo=Yp - f [pa(g cos s + asy) + C5yv5y]dzs, (2.16)
0
. A s £ _
Yp = E{ f [Pst (65 +35. atz)dxs + f {15 (g cos s + asy) + coyvsy)zsdas
0 0
- f [#s{gsin @5 + ass) + c5ovss) wedzs. (2.17)

In which ¢z, ¢;y are external damping coefficients per unit length and vjz, vy, a2, ajy
7 = 3,5) are velocity and acceleration components in the moving reference frame (z; y;), which
g 7Yl
are determined as follows:

vje = —£;_1@y-18in{p;_1 — 5} — G;ws,
. . dw;
viy = &_ @i~ c08{p;_y — p5) + &z + Ta}i’ (2-_18)
* - . * * -2 . aw_,- - )
ajz = —&;_1Pj-18in(pj_y — ©5) — 187y cos(pj—1— ;) — 299:“(-_)7 — P T P,
4 - * ) 2 3 zw_-"
a5y = L1 85-1€08(Pf1 — 15) = G181 sinlpiy — 07} — G + B0 + —2F

Note that :
L=b, =4, pi=¢ ¢1=0, (2.19)

By analogy with the calculations in [3] the following equations of relative transverse vibration
of links AB and CD can be written:

a2 %w; 83wy ] 3wy
527 |57 (G + eigae) | = 5 oo o+ )
4 &
. %w;
- {X_.,' — | py(2)[gsing; + ays(z)]dz - ij(x)ﬂjm(ﬂ:)dz} 522 (2.20)
7

x5 x5

. ) awj .
— ['U,J(g s1n 4 -+ a’jx) + c.’,":n'v.’]'-'l:] —-—--ag: - + F'J(g COS Py -+ ajy) =+ Ciy Uy = 0 (J = 3, 5)
1
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with the boundary conditions

azwj ngj-
wy(0,t) =0, w;(¢;,t) =0, ( 522 )31:0 =0, ( 52 )me, = 0. (2.21)

In (2,20) X5 = Xp, Xs = Xp, @, is internal damping coefficient coming from the expression
L. . — . aa .
" relating strain € and stress o in.an elastic beam: o = E(s + aca) .

In total we have 17 equations: (2.3} — (2.17) and (2.20) to determine 17 unknown quantities:
wa, wg, reactions at joinss Oy, Oz, O3, A, B, C, D and relation between the driving moment My

and the angle 2.

Note that after having found wy, ws it is easy to determine other unknowns, Therefore the
determination of relative transverse vibrations ws, ws is essential.

3. Sma.ll transverse vibration of connecting rods during uniform rotation of the
crank

We consider small vibration of rectilinear, homogeneous connecting rods having constant sec-
tion and constant damping coefficient. Supposing that the crank OA rotates with a constant
angular velocity {1 '

E;, Fj, pis iy eyms Ciyr Cjoy {1 = const (J. = 3:5)5 oz = (1. ) (3-1)
. Putting Y3 = ps — @3 =Mt — 3, ¥s =9, — s = ps — b1 — 5. (3.2}
Eliminating Xp, Xp in (2.20), neglecting nonlinear terms we obtain after some calculation:

Btu, Bw;  p Pu; s .
Az 4 ta 3m;1t_%3m;;12_[f4(t)+3f3(t) -7 fa(t) - ] P [fs{f)—’fg(t)x,]

2an . ., )
+ Epff aa:% * EC'J.!.'I aaf. =7 ha(thws =~ folt) = fult)es (i =3,5) (3.3)

where

[QCOS‘PJ'I'EJ 195 1‘503¢J a3 1‘P;,, 131111,&3] Ejeg 195—1 €08 ¥,

(3.4)

1‘P3 ycos ¢s| — E’.}'E;_lgb,-_l sin ¥,
v

S(SOJ+1—PJ)['E“PJ ’fo(t} +’f1(f)£2] jfs(t)-ﬂg'+"f2(t)£i,

in 3 termmed by (2 19) and note that: ¢z = 0, ¢z = 0, and Bk, Ok, ©
(k =3, 7 uated from (2.2),. Therefore 7 f, are periodic functions of t with the period
2n /02 .
R Ps-‘-'e cos(ps + g} + Jo,Ps -
Also: Hs Eesm(pe “es) 0 - . (3.5)
Ha=t, Xe sin(p4 pa) = Yo cos(B, — ©3) + PyS,, cos(tfa.; +o4) +Jo, P (.6)
£y sinfpq - ) : Ly sin(py — p3)
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As an application of the generalized Ritz’s method, the solution of the equations (3.3) with
the boundary conditions (2.21) is found in the form:

I

wilz;,t) = > Tg(t)sin (i;;a:,-) (7 =3,5). (3.7)

=1

Substituting (3.7) into equations (3.3) we obtain after some calculation a system of linear
differential equations with periodic coefficients of period 27 /(1 as follows

IMIG+IBIg+IC() I§="R(O1) (5 =3,5), (3.8)
where: 77 = (Yq1,7g2,...,7q1)T; Tk = (J-h]_,jhz,.:.,jhf)T; iM, 7B, C are square matrices of
order I, the elements of which are calculated form:

. jp T2 i .
ey = [ | e 3 1
ik = [J'E(’“e,-) + E,-Jj]ﬁ"’ (3.9)
; wyd L ;
1h., = Y . 1Y i .
= [onli) 4 2 o0

(k£)4+( —-) ult) + B o ’fa{t) ( rLe ) falt) i i = &,

£
Jc;k= . Haik[Est(t}_sz(t)] if ?:+k-0dd, (311)
: ]
—a"k"'fg(t) . if t%k; i-i-k-even,
in which:
in whic | 122”)‘(1&) i i-even,
ip, = (3.12)
25 o
_;[;J'fo(t)+—;—-7fl(t)] if ¢-o0dd
d .
an 5‘:2{0 =1 a--=‘£j[ 1 1 ] it (3.13)
I BT G=77  G+a)

. After having determined the values of w; (7 = 3,5), we substitute them into the equations
from (2.3) to (2.17) and easily get other unknowns, reaction components in the moving reference
for example. A program based on the mentioned algorithm for evaluating condition of dynamic
stability and periodic solutions of relative transverse vibration of connecting rods is introduced. It
can alzo determine reaction components in the moving reference. It is written in FORTRAN 77,
easily used for personal compuier.

4. N umeriéal Simpulation

The following data numerical calculations are given:

€3z = €3y = €gz = c5y = 107%kg/(mmas); ag, = ag, = 107*s; Jo, = 18300kg.mm?;
Jo, = 11500mm?; ¢, = 270mm; 4, = 55mm; 43 = 259mm; &, = 200mm; £ = 258 mm;

£5 = 220mm; £, = 300mm; Z, = 200mm; s, = 118mm; 3¢ = 113 mm; as = —0.15; a5 = 0;
B4 =0.3; § = ¢ = 0. The links O;BC and O;D have mass 1.84kg and 1.35kg respectively.
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The connecting rods AB and CD) made of steel have mass 0.165 ké and 0.163 kg respectively;
elastic modules E3 = Es = 21 - 10" kg.mm~ 152, area of the cross section F3 = 10mm?, F; =
9mm? and moment of inertia Js = Jy = 4500 mm*.

Some of the Tesults are shown in the table and figures 6 to 15,

~ PHASE TRAJECTORY (I = 1) PHASE TRAJECTORY (I = 5)
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REACTION
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After having determined condition of dynamic stability, the program evaluates the values of
initial conditions and then determine the solution during a period.

Table 1 gives a comparison between the amplitudes of 7¢;{t} { = 3, 5; 1 = 1,...,5) at the
angular velocity n = 300 rotations per minute.

Table 1. Maximum values of }7g;(t)]| (unit: mm)

Connecting - I=1 . I=5

Rod qi q1 G2 qa 94 45

AB(®q) 0.40151 0.39812 0.05008 0.00162 0.00016 0.00013
CD(%¢:) 0.14537 0.14541 0.01042 0.00060 0.00003 0.00005

Figures 6 and 7 show phase trajectories of variables 3g; and %¢; for / = 1 and T = 5 at the
angular velocity n = 300 rotations per minute. The horizontal represents 7¢; and the vertical 7¢;
(7 =3, 5; £ =1,...,5). The phase trajectory of the variable corresponding to rod AB labeled
with symbol AB(3) is outside the phase trajectory of the variable corresponding to rod CD labeled
with CD(5).

The fact that the phase trajectory is closed proves that the obtained solutions are periodic.
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From table 1 and figures 6 and 7 we can see that the difference in value between Iqa(t) for
I'=1and I =5 (j =38, 5 is negligible. As for I =5 the values of 7gx(¢) (s = 3, 5; k= 2,3,4,5)

ax(lga|)

. m
obtained from table 1 are very small in comparison with g (¢}, for example T N 1%,
max(q,|)

max{}¥ga})

max(|7q)
obtained for different values of angula,r velocity n. Therefore it is suggested finding the solution in

" the form: wy{z;,t) = (t]sln(’; ) (5 =3, 5).

s 0.4%, the values of Yq4 and 7gs are even much smaller. Similar results can be

Figures 8, 9, 10, 11 give responses of the reaction components Y4, Yp, Y¢, ¥p along the
direction % in the moving reference (z;y;) at articulations A, B, C, D respectively in case of taking
elasticity in account. On the other hand Ya,, Yp,, ¥¢,, Yp, denote the same quantities in case
of meglecting elastic factors. The figures plotted during a period at the angular velocity n = 2400
rotations per minute, show the effect of elasticity upon articulation reactions in the g direction.
Figures 12, 13, 14, 15 are similar with the figures 8, 9, 10, 11 but at the angular velocity » = 3000
rotations per minutes. The difference in value between reaction components in the z; direction is
negligible.

When evaluating the effect of elasticity upon articulation reactions we find that elasticity has
little effect for n < 2000 rot/min., the effect becomes significant for n > 2000 rot/min. and very
significant for n > 3000 rot/min.. This result appears reasonable because the value of relative
transverse vibration w;(x;,t) also increases rapidly for n > 3000 rot/min..

5. Conclusions

In this paper the substructure method and d’Alembert’s principle have been applied to the
derivation of differential equations of motion of a six-link mechanism, in which two connecting
rods are elastic and the other links are solid. In case of uniform rotation of the driving link
the generalized Ritz’s method iz used to transform the partial differential equations into ordinary
differential equations with periodic coefficients.

A program for relative transverse vibration analysis of the connecting rods and for evaluation
of reactions at joints has been written. Numerical examples are given, some remark on the obtained
solutions as well as the evaluation of the effect of elasticity on joint reaction are made.

The prezented method can be applied to any type of six-link mechanisms of the order 2. It is
also applicable to any mechanism as a combination of solid and elastic kinks,

This publication iz completed with financial support from the National Basic Research Pro-
gramme in Natural Sciences.
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TINH TOAN B}NG sd DAO PONG UGN 1;UKN HOAN CUA CAC
THANH TRUYEN PAN HOI TRONG CO CAU SAU KHAU BAN LE

Trong bai bio ndy 4p dung phwong phdp tdch cdu tric vi nguyén 1§ d’Alembert € thiét lip
phwong trinh vi phin chuyén ddng co cdu cia mit dang co ciu 6 khin ¢6 hai thanh truyén i cdc
thanh dan hoi.

Trong trutrng hgp chuyén déng binh &n, 4p dung phwong phdp Ritz suy rdng nhin dwec hé
phwong trinh vi phin tuyén tinh hé 88 tuin hoin. D3 thidt 1ip dwoc chwong trinh tim didu kién

8n dinh vi nghiém tulin hoin cda hé phwong trinh nhin dwoc. Di dwa ra vf du minh hoa vi cé
so sdnh inh huéng cia y&a t8 dan hot ddi véi phan hec cda cic khép.
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