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Abstract. Application of the substructure methoCI. and d'Alembert's principle to deriving the 

differential equation of motion of a six-link mechanism with two elastic connecting rods is presented 

In the case of stationary motion, the generalized Ritz's method has been applied to obtain 

system of linear differential equations with periodic coefficients. We have written computer programs 

to check conditions of dynamic stability and to find periodic solutions of the obtained equations. 

Numerical examples are given and from which the effect of elastic factors on articulation reactions 

is evaluated. 

1. Introduction 

Informative development has made the solution of certain mechanism vibration problems 
possible. However, it is usual that only natural frequencies or solution in the starting period are 
found. The determination of periodic solutions for stationary motion in mechanisms with both 
solid and elastic elements is still under investigation [3-8]. 

In [3] we examined the periodic transverse vibration problem of a connecting rod in a four-link 
mechanism. The objective in this paper is to extend the method into a mechanism having six links. 
The substructure method has been applied to deriving the dynamic equations of the mechanism. 
From which equations of transverse vibration of the connecting rods are obtained for the case of 
the driving link rotating unifonnly. The dynamic stability conditions and periodic solutions of the 
mentioned equations are found by using numerical method [1, 2]. 

2. Derivation of dynamic equations 

We consider a six-link mechanism (Fig.l) moving on the vertical plane, in which the crank 
O,A (link 2}, the rocker 0 2BC (link 4), the rocker 0 3 D (link 6} are solid bodies of weighs P2, 
P4, Pe, and centers of mass Sz, 84, Sa respectively. And 01S2 = Sz, 02S4 = s4, 03Ss = sa, 
L A01S2 = "'2' L B02S4 = cq, L B02C = {34 , L D03 S6 = a 6 • 

The connecting rods AB (link 3), CD (link 5) are elastic bodies. Supposing that the connecting 
rods are rectilinear and their axes without deformation coincides with the elastic one and that 
longitudinal vibration is negligible. The connecting rods AB, CD have area of the cross sectiori. 
F;, mass density Pi, mass per unit length J.LJ, elastic modules E;, moment of inertia J;, relative 
transverse vibration WiJ where j = 3 for the element AB, j = 5 for the element CD. 

Fig.l shows the mechanism with global axes 0 1 ery. The horizontal o,e forms with the 
segments 0,02, 0 20,, O,A, AB, 0 2 B, 0 2C, CD, 0 3 D the angles 0, 0, <p2, <ps, 1"4, <p4 , <ps, pe 
respectively. We have: 

iD. = 'P4- fJ •. (2.1) 
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Given 01 Oz = £1> OzOs = l1, 01A = lz, AB = ls, OzB = t., OzC = "l., CD= is, D03 =is. 

The kinematics relations between links are: 

lz cos <pz + £3 cos <p3 - £4 cos <p4 - £1 cos 9 = 0, 

iz sin 'P2 + is sin 'P3 - e. sin 'P4 - £1 sin 9 = o, 
"l. cos j04 + ls cos l"s -is cos 1"6 -l1 cos 0 = 0, 

"l. sin j04 + ls sin <ps -is sin 'P6 - l1 sin 0 = 0. 

(2.2) 

From (2.2), we can find 'Pi ='Pi (p2 ) (i = 3, 4, 5, 6). In the stationary regime we have <p2 = flt 
(fl is constant), thus 'Pi are periodic functions with period 21fjfl. 
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Fig.1 

Applying the substructure method we divide the mechanism into 5 sub-structures. Each of 
the links represents a substructure. 

The symbols Jo,. Jo, Jo, indicate moments of inertia of 0 1A, 0 2 BC and 0 3D with respect 
01, Oz, Os respectively. 

The application of d' Alembert's principle to each link yields: 

For the crank 0 1A (Fig. 2): 

Xo, = -XA + P2 sin 'Ps - ~2 
sz [j!>~ cos( <pz - 1"3 + a2) + pz sin(<pz - <ps + <>z)], (2.3) 

Yo, = - YA + P2 cos 'Ps - ~2 sz [j!>~ sin(<pz - 'Ps + <>2) - P, cos(<pz - 'Ps + <><2)], (2.4) 

Md = Jo, Pz + £2 [xA sin(102 - 'Ps) - YA sin(<p2 - 'Ps)] + szP2 cos(<p2 + <>2). (2.5) 

For the rocker 0 2BC (Fig. 3): 

Xo, = -Xa cos(<ps- 'Ps) + Ya sin(l"s - 'Ps) + Xs + P4 sin <p3 

- ~4 
s,, [ <P~ cos(<p• - 'f!s + "•) + P• sin(<p• - 'Ps + "•)], 

Yo,= -Xa sin(l"s -ps)- Ya cos(l"s- 'Ps) + Ys + P• cos<ps 

- ~4 
s4 [ p~ sin( 'P4 - 'Ps + "'•) + P• cos( 'P4 - 'Ps + <>•) J, 
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Fig.S Fig.9 

Fig.4 Fig.5 

F~r the rocker OaD (Fig. 4): 

Xo, = XD + Pa sin <ps - :• sa [<P~ cos(<ps - 'P5 +as) +<Po sin(<pa - 'Po + ao)], 

Yo, = YD + Pa cos <ps - :• sa [<P~ sin(<pa - <ps +as) + <Pa cos(<pa - <ps + as)], 

XD "= Pesac~(~st as)+ (o,<Pa + YD wtg(<ps _ <ps). 
sm 'Pa- <ps 

t, 

XA = Jfs- / [J.Ia(gsin<pa + aam) + ca.va.]d:>:3 , 

. 0 

t, 

YA = Ys- j [p,(gcos 'Ps +a,.)+ c3yv3y]d:>:3, 

0 
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4 3 ~ 

Ys = £~ { j [Ps Js ( s'is + 0~3~~2 ) dxs + j [J.'s (g cos lOs + asy) 
0 0 ,, 

+ c3 yvsy]xsdxs- J [J.'s(gsinl"s +as.)+ cs.vs.]wsdxs. (2.14) 
Q 

As for the connecting rod CD, it is seen that the model is completely similar to that of AB 
by changing the index 3 into 5 and the letters A, B into C, D respectively. So we have: 

'• 
Xa = Xv- J (J.Ls(gsinl"s +as.)+ cs.vs,]dxs,. (2.15) 

0 

e. 
Yo= Yv- J [J.Ls(gcos\Os + asy) + csyvs.]dxs, (2.16) 

0 

is ls 

Yv = £~ { J [psJs(s<:is + a~:~~2)dxs + J [J.Ls(gcos\Os +as.)+ CsyVsy]xsdxs 
0 0 ,, 

-J (~ts(gsinl"s +as.) +cs.vs.]wsdxs. (2.17) 
0 

In which Cj:rn Cjy are external damping coefficients per unit length and Vj:r. 1 Vjy, ajz, aiy 

(j = 3,5) are velocity and acceleration components in the moving reference frame (x; Y;), which 
are determined as follows: 

••. ·r· l. Vjz = -.r..3_ 1 lf'i-1 sm lf';- 1 - lf'i - !pjWj, 

,. . . ( • ) . aw; 
Vjy = (.,.j-1 Pi-1 cos rpj-1- ~Pi + <pjXj + 8t' (2.18) 

i.• - . ( • ) ,. ·2 ( ) 2. ow; .. ·2 
aiz =- i-t'Pi-1 sm rpi-1- <p; - (.,.i-Irpi-1 cos cpi-I- ~Pi - IPiBt- IPiWJ- <pixil 

* ·· * * . 2 . * . 2 .. 8
2 

w3 a;y = i.;_ 1 10;-1 cos(l";- 1 - 10;)- i;- 11";-1 sm(l";-1 - \0;)- \O;W; + \O;X; + iJtZ · 

Note that 
• IP2 = 'P2, (2.19) 

By analogy with the calculations in [3] the following equations ofrelative transverse vibration 
of links AB and CD can be written: 

0 2 [ (a 2 w· a•w·)] a [ ( a•w· )] OX~ E;J; ilx~
3 

+ O<jc ilx2 at - ox,· p;J; \Oj + ax, 8~2 
J J J 

' ' !' j' 2 - {X;- ~t;(xl[g sin \0; + a,-.(x)]dx- c;.(x)v;.(x)dx} 
8

8~; (2.20) 
~ ~ J 

- [J.L;(g sin \0; +a;.) + c; •. v;.] ~w; + ~t;(g cos \0; + a;y) + c;y.Vjy = 0 (j = 3, 5) 
UXj 
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with the boundary conditions 

w,.(o, t) = o, w,.(t,., t) = o, (2.21) 

In (2.20) X3 = Xs, X5 = Xv, aic is internal damping coefficient coming from the expression 

relating strain e and stress a in~~ elastic beam: a= E( e + ac ~;). 
In total we have 17 equations: (2.3} _, (2.17) and (2.20) to determine 17 nnknown qnantities: 

w3, ws, reactions at joints 01, 02, 03, A, B, C, D and relation between the driving moment Md 
and the angle '1'2. 

Note that after having found w3, Ws it is easy to determine other unknowns. Therefore the 
determination of relative transverse vibrations w3, w5 is essential. 

3. Small transverse vibration of connecting rods during uniform rotation of the 
crank 

We consider small vibration of rectilinear, homogeneous connecting rods having constant sec
tion and constant damping coefficient. Supposing that the crank OA rotates with a constant 
angular velocity 0 

E;, F;, Pi, J;, l;jlln CjyJ CtjcJ n =canst (i = 3, 5); IP2 = nt. 

Putting t/13 = 'P2- 'P3 = Ot- cp,, ..Ps = i5.- 'Ps = '1'4- fi•- 'PS· 

(3.1} 

(3.2} 

Eliminating Xs, Xv in (2.20), neglecting nonlinear terms we obtain after some calculation: 

a•w,.. a
3
wj Pi a•w,. [" () . () j ( )"'~]a2 w,. [" () j () law; -.- + "'3"c a •a - -E a 2a 2 -

3 I· t + 3 Is t Xj- h t -2 -a 2 -
3 Is t - h t x; -a az. x.t 3·x.t X· X3" 

3 3 J J 

'+" • P•i a
2
wj Cjy 8wj j ( ) · ( ) j ( ) ( ) · -·- -- + -- -- - 12 t w; = - 3 fo t - f1 t "'i i = 3, 5 

E;J; at2 E;Ji at 
(3.3} 

where 

. i)j, (t) /Jj [. t• - .1. t• . 2 ' .J, ] Cjy t• . .1. o = E·J· gcosp;+ f-lcpi-lcos-y;- i-tP;- 1Slnryj +E·J· i-t'Pi-tCOSlf'i' 
3 J 3 3 

"'""' 3fl(t)"~' JJ,;~ .P;'t c;y. <!>;, ; /.(t) = ...J!:L.p', (3 4} 
3''""''"'''" ,,,,;.E;.;J;,~;o ,,· ,!iJ,-!f ·· B;J; 

3 
• 

~;''':;irJ~t)':''£f.~;f~siJi~i"-:-:t;_i.p;:;, sin t/1; -lj_1 <PJ-1 cos t/1;] - ~;;. tj_1 <P3-r sin t/1;, 
H \:.');j'.de•\./J:,;_;;,_,:,,,~ ,·J:.'".< )i),:_,:,:~- ',•. •'' · ) J 

i"i "J-J.Wl3~11~t '+'g),[~('P;+I- 'P;) [;, .P; +; /o(t) ~- +; fr(t) 1J-; fs(t).t; + 'J.(t) tJ , 

in which: '~tL:,##''aZt~i-iiuned by (2.19} and note that: .,0. = o, <!>2 = n, and .Pk, <Pk, 'Pk 
(ic = 3, ... ,c6] are .evaluated£rom (2.2},. Therefore i /; are periodic functions oft with the period 
21r /0 

Als ' H . ~ P.s6 eos(cp6 +a.) + Jo, .p. (3.5) 
o. s-. ·. 4sfu(cp•-cps) ' 

H -t Xashi(p4 -cp3 )-Yacos(i54 ~<p,) P4S4 cos(cp4 +a4)+Jo,<P4 (
3

.
6

) 
3

- 4 £.sin( 'I'•- i'3) + £. sin(cp4- 'P3) 
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As an application of the generalized Ritz's method, the solution of the equations (3.3) with 
the boundary conditions (2.21) is found in the form: 

I 

w;(x;, t) = L iq; (t) sin (i ;. x3) (j = 3, 5). 
i=l J 

(3.7) 

Substituting (3.7) into equations (3.3) we obtain after some calculation a system of linear 
differentia.! equations with periodic coefficients of period 21T /0 as follows 

(3.8) 

h . i-- (i i iq )T · ih~ - (ih ih ih )T • w ere. q - q1, q2, ... , I , - 1, 2, · · ·, I , iM_, iB, ic are square matrices. of 

order I, the elements of which are calculated form: 

in which: 

and 

j [ (·")4 Cjy] ; bik = O<jc '"[: + E .J. 6k, 
3 1 1 

(k ;.r + (k ;rj f<(t) +I<?;;_,. h(t) _ G + k2
:

2

)' h(t) ifi = k, 
3 3 3 

-O<;k r:iJa (t) - 'h(t) l if i + k- odd ' 
3 

-a;kih(t) if i ,< k; i + k- even , 

-,.- 1 t if i-even, 
'h;= '" { 

12i,.,., ( ) 
14· 2l;· 

-; [;;:
1 f0 (t) + -;-1 

/ 1 (t) J 

. {0 s; = 1 
ifj=i 

ifj,<i 

if i-odd 

. ·[ 1 1 l . ..J. • 
"'•; = ' 3 (i- j)2 + (i + j)2 ' 7" J . 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Mter having determined the values of w; (j = 3, 5), we substitute them into the equations 
from (2.3) to (2.17) and easily get other unknowns, reaction components in the moving reference 
for example. A program based on the mentioned algorithm for evaluating condition of dynamic 
stability and periodic -solutions of relative transverse vibration of connecting rods is introduced. It 
can also determine reaction components in the moving reference. It is written in FORTRAN 77, 
easily used for personal computer. 

4. Numerical Simulation 

The following data numerical calculations are given: 

Cs:z: = C3y = C5:z: = C5y = lQ-6 kg/(mm.s)i 0:3c = O:sc = 10- 4 Sj Jo'J = 1830Qkg.mm2; 

Jo, = l1500mm2; e, = 270mm; e2 = 55mm; e3 = 259mm; e. = 200mm; e. = 258mm; 
£. = 220mm; L1 = 300mm; £4 = 200mm; s4 = 118mm; s6 = ll3mm; a 4 = -0.15; a 6 = 0; 
!3. = 0.3; 0 = 8 = 0. The links 0 2BC and 0 3D have mass 1.84kg and 1.35kg respectively. 
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The connecting rods AB and CD made of s'teel have mass 0.165 kg and 0.163 kg respectively; 
elastic modules E3 =Eo= 21 ·107 kg.mm-ls- 2 , area of the cross section F3 = Wmm2 , Fs = 
9 mm2 and moment of inertia. J3 = Js = 4500 mm4 • 

Some of the results are shown in the table and figure~ 6 to 15. 

PHASE TRAJECTORY (I= 1} 

-Q.6 

AB 
(jd) 

ISO 
roo 
so 
0 

-so 
-100 
-l!iU 

Fig.6 

REACTION 

Fig.8 

REACTION 

IN) 

Fig.10 

(S) 

aoJ 

(S) 

0,03 
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PHASE TRAJECTORY (I= 5} 
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Fig.12 Fig.19 

REACTION REACTION 
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2000 " Yo 
' 

/QOQ J. 
Yoo 

Q 

-/000 

-2000 

Fig.14 Fig.15 

After having determined condition of dynamic stability, the program evaluates the values of 
initial conditions and then determine the solution during a period. 

Table 1 gives a comparison between the amplitudes of iq;(t) (j = 3, 5; i = 1, ... , 5) at the 
angular velocity n = 300 rotations per minute. 

Table 1. Maximum values of /"q;(t)! (unit: mm) 

Connecting I= 1 I=5 

Rod q, q, q2 qs q4 qs 

AB('q,) 0.40151 0.39812 0.05008 0.00162 0.00016 0.00013 
CD(5q,) 0.14537 0.14541 0.01042 0.00060 0.00003 0.00005 

Figures 6 and 7 show phase trajectories of variables 3 q1 and 6 q1 for I = 1 and I = 5 at the 
angular velocity n = 300 rotations per minute. The horizontal represents i q1 and the vertical i q, 
(j = 3, 5; i = 1, ... ,5). The phase trajectory of the variable corresponding to rod AB labeled 
with symbol AB(3) is outside the phase trajectory of the variable corresponding to rod CD labeled 
with CD(5). 

The fact that the phase trajectory is closed proves that the obtained solutions are periodic. 
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From table 1 and figures 6 and 7 we can see that the difference in value between i q,(t) for 
I= 1 and I= 5 (j = 3, 5) is negligible. As for I= 5 the values of i qk(t) (i = 3, 5; k = 2, 3, 4, 5) 

obtained from table 1 are very small in comparison with iq,(t), for example maxll'q
2 :l "'1%, 

max Jql 

max(liq3 ll "' 0.4%, the values of iq4 and iq5 are even much smaller. Similar results can be 
max(l3 q1l 
obtained for different values of angular velocity n. Therefore it is suggested finding the solution in 

the form: w,.(x,., t) = iq(t) sin(;. x,.) (j = 3, 5). 
3 

Figures 8, 9, 10, 11 give responses of the reaction components YA, YB, Yo, Yn along the 
direction Yi in the moving reference (XiYi) at articulations A, B, C, D respectively in case oftakin,g 
elasticity in account. On the other hand YA 0 , YB 0 , Yo0 , YD0 denote the same quantities in case 
of neglecting elastic factors. The figures plotted dJ;rlng a period at the angular velocity n = 2400 
rotations per minute, show the effect of elasticity upon articulation reactions in the Yi direction. 
Figures 12, 13, 14, 15 are similar with the figures 8, 9, 10, 11 but at the angular velocity n = 3000 
rot~t"ioD.s per miri.utes. The difference in value between reaction components in the Xi direction is 
negligible. 

When evaluating the effect of elasticity upon articulation reactions we find that elasticity has 
little effect for n < 2000 rot/min., the effect becomes significant for n > 2000 rot/min. and very 
significant for ·n > 3000 i'otfmin.. This result appears reasonable because the value of relative 
transverse vibration w;(x;, t) also increases rapidly for n > 3000 rot/min .. 

5. Conclusions 

In this paper the substructure method and d' Alembert's principle have been applied to the 
derivation of differential equations of motion of a six~lin.k mechanism, in which two connecting 
rods are elastic and the other links are solid. In case of uniform rotation of the driving link 
the generalized Ritz's method is used to transform the partial differential equations into ordinary 
differential equations with periodic coefficients. 

A program for relative transverse vibration analysis of the connecting rods and for evaluation 
of reactions at joints has been written. Numerical examples are given, some remark on the obtained 
solutions as well as the evaluation of the effect of elasticity on joint reaction are made. 

The presented method can be applied to any type of six-link mechanisms of the order 2. It is 
also applicable to any mechanism as a combination of solid and elastic links. 

This publication is completed with financial support from the National Basic Research Pro
gramme in Natural Sciences. 
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TfNH TO.AN BANG so DAO DQNG UON TUAN HOAN cUA c.Ac 
THANH TRUYEN DAN HOI TRONG ca c.(u sAu KHAU BAN LE 

Trang bhl baa nay ap d>;tng phll"O"Ilg phap tach cau true va nguyen ly d 'Alembert dg thie"t l~p 
phrrang trlnh vi phan chuy~n d<)ng crJ cl{u cda mgt d~ng w cl[u 6 khau c6 hai thanh truy~n Ia cac 
thanh dan hlli. 

Trang tru-Gng hqp chuy&. d<)ng blnh 8n, ap d~ng phtrang phap Ritz suy r9ng nh~n dU"\l'C h~ 
phU"r:Jng trinh vi phan tuye'n tfnh h~ sli tulin hoan. flii thie't l~p drrqc chrrrJng trlnh tlm di~u ki~n 
gn djnh va nghi~m tuh hoan cda h~ phll"O"Ilg trinh nh~n drrqc. flii dU"a ra vi d~ minh hga va c6 
so sanh anh h®ng cda yl!'u t<l dan h"Oi d<li v&i phan lvc cda cac kh&p. 
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