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CALCULATION OF THE PRESSURE
ON THE VALVES OF A SLUICE
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Abstract. This paperis devotedtoa numerical method for calculating the pressure on the vertical
two-dimensional valve basing on Navier-Stokes equations. Numerical solutions at interior points
are established by splitting Navier-Stokes unsteady ;;wo-dimensional equations into two unsteady
one-dimensional equations. An implicit scheme is obtained and the solution for these equations is
established by the double sweep method. The values at the boundary points are calculated by the

method of characteristies.

This algorithm is applied to the concrete case presented at the end of this paper

1. Introduction

It is very difficult to calculate the pressure fields, especially, in the case of solid boundary.
Much attention has been paid to this problem. The aim of this paper is to present a numerical
method for calculating the pressure on the vertical two-dimensional valve in hydraulic engineering.

It is well known that the Navier-Stock equations for viscous incompressible fluid flows have
the dimensional form as following:

8 1
;; +(V V)V = ——VP+vAV +F,

V.V=0

(1.1)

where V is velocity vector, P - pressure, F - exiernal force, p - density, v - kinematics viscosity.
Let take p = 1.

It is difficult to find directly numerical solutions of equations (1.1}, To avoid it, the arti-
ficial compression component is added to the continuity equation (see [1, 2]}, and we obtain a
modification for the Navier-Stokes equations as follows:

av
e +{V-V)V=-VP+vAV +F,

V2 1.2
3(P+T) ( )
m"at—“+va=0.

We suppose that either the channel has large enough width (in Oy-direction) or the velocity
of fluid flow changes slowly in QOy-direction, then we can rewrite equations {1.2) in the vertical
t.wo-dlmensmna,l equations of fluid flow (in (z, z)-direction).

The authors of [5] have considered the vertical two-dimensional fluid flow, the governing
equations of which have following forms:

Ou du du Jp
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o e, ”
where g is the acceleration of gravity, 1 = sin £, and ¢ is the angle of inclination between the gravity
and the Oz-axis.

The first component on the right of two first equations (1.3) represents projections of gravity
onto coordinate axes. '

According to the idea mentioned above, the continuity equation (1.4) can be changed into:

8¢ Ju Ow
ET 3—ﬂ;+ 3 = 0. (1.5)
o2
where ¢ = p -+ T
The equations (1.3), (1.5) are solved by the splitting method, particularly, we solve each
one-dimensional equation in z, z- directions respectively, as follows (see [1]):

13y ¢ 8%y

35t " e: Ve TV

18w dw Fw
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29t @ ez a2 ()
10q1  Ou _

28t 8z

18u du 8%y

25t "9z

13w 3dg¢ 2w - 7
bl = Ay T
2 ot 3z v z2 1=2%yg (1.7)
1dg; 0w _
29t 8z
where
u? w2 1
q=pt5, @=pt and q=g(9‘1+€2)-

2. Algorithm

The main idea solving equations (1.6), (1.7) is as follows:

Firstly, under the given initial conditions, we find numerical solutions of equations (1.6} along
the line z = const at the first half-time-step, then, we use the results obtained from this stage as
initial conditions to solve equations (1.7} along the line z = const at the other half-time-step. The
obtained results are considered as the numerical solutions of equations (1.3), {1.5) in the whole
time step,

In order to find the numerical solution of equations (1.6), {1.7), we have to calculate the
numerical values at each point of the considered region, i.e. at the interior points and at the
boundary points.

A. At the interior points of calculated region

In order to determine u, w and p values (as well as u, w, g1, g2) at the interior points, we
use implicit finite-difference scheme to solve equations (1.6), (1.7). The following finite-difference
equations are obtained
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Lau™ ™t + Bu™] + ig,

dt dx (d )2
wtE — b I e B 1 n AL " n
o @ put) Tlaw™tE 4 put] = vTestlauE 4 pu, (2.1)
n+2 _ . . - — - ——— e )
= dt Ly A;g" [au™TF + fu”] =0,

pntl un+§

+ (aw"+l + ,@w"'*’%)g-w(au"""l + fu "'+1} AEA—Z [cm""'1 -+ ['lt.p."""lz‘]j
P

dt a2
LI o S wn+, n A A_ " -
— 22 (agg* + g ) = v agE et BT - V-2 g, (
2.2)
n+1 et § 1
da dtqZ + Ad;2 [awn+1 +ﬁwn+§] =0.

where dz, dz are the spatial steps in #- and z-direction respectively, dt is the time-step, o+ =1,
0<a, <1,
Ag; (i =1, 2} are difference operators with
¢ = 1: in z-direction
1 = 2: in z-direction
D10 = Pt e — Pmki D2P = Pmk+1 = Pmk
A_10 = Pmik — Pm-1k] D2 = Pk — Pm k-1
Now the Courant-Levi stability condition {see [6]) can be applied:
A=A_,; ifaut? + fum >0
A=A if ety + gum <0
§=A_gif cw™¥ 4 Bt >0
6= Ag if cw™l + fu™ <0
or one can choose A, § as central differences.

For the sake of brevity, only the algorithm for the case of central differences A and § is
described. The full algorithm will be realized in FORTRAN 77.

It is very easy to check the differential coefficients (2.1), (2.2) having first order approximations
for dt, dz and dz, except for the case « = § = =, we have second-order approximations for dz, dz.
The scheme is explicit when & = 0, § = 1 and implicit otherwise.

It is easy to see that the implicit finite-difference equations (2.1), (2.2) can be drawn double
sweep form at grid points in z, z-directions.

1 1
a) The implicit finite- d‘zﬁ’erence equations (2.1) elong z-direction for um+k , w;';c’ and ql-; &
Gl)
1
Wt = Ll 4 K (2.3)

(M + 1<m<Mk—1)
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where

G = — @z )z(dta+v)
1
b (d )Z(dta—l-y) Em = G,
n ‘. 1-a n n 1 .
fm__= a(__ql,m-i-l,k + 4T i) + W(dtﬂ + V)(u?nﬂ,fe - 2_“m,1_c + "fm-—l,k) + ?‘Eu‘,r:m,k +19, S
_ Gm . _ fm —emHEm—1 .
Lm = b + cmLm-l ' Hm = b + ':m.Lm.—l

It is easy verify that |bp| > |am|+ |em{ + &, § > 0. Therefore the double sweep method do not .
accumulate the computional error (see [6]).
Note. M}, M} are the numbers of the left boundaries and the right ones respectively, at K-tk
row:
Up k= Pk sz = Vi Kap =0k Lagp =0,
where @}, ¥} are the known values at the boundary.

az) d
+1 t a4 1 n+1 n
Q;_l m2k = QI mk d:r: (a(um,kn m—l k] + (1 0!) (“;,k = Uy 1,k )) (24)
(Ml +1<m<Ml—1)
as) -
Wit = LW 4K, (2.5)
(MP+1<m< M -1)
where
n+2 . -
. _ofon,, ;7 4 (1~ ajuy, k)__ ver
™ 2dz (dz)?’ -
b_i+2va_c _a__zua.
T dt o (dz)2? T ™ M (dz)?’
fon = w?n,k (o‘“ iy (1= ojup, (1~ a)(wh 1 —wh_; k)
m dt 2dz .
vil—a), . '
+ —((—d—z—)g——(wm+1,k — 2 ot w1 k)
Gm Fm = em K1
Lm o r—r—— K —_— ———
- b+ CmLm—l ! " b -+ cmdim—-1 ’ '
+
W;;'O‘ftc =¥k Mlk =¥ ; KME = Pk 3 LM[? =0,
where @, ¥, are the known values at the boundary. :

b} The 1mphczt finite-difference equation (2.2) along z-direction for Wi+! s q’;"r;lk and u

!, K2 are the numbers of the upper and lower boundaries at the m~* column, respectively.

bl)

Wil = LWl + K (2.6)
(Ko, +1< k< K} ~1) '
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where

= dt
“= G 23 @ )
1
b (dta + V) Ck = Gk
- (d o
+3 ntj +3 ntd o
fk: = '_(_-'q;,m?k+l + G m) + (d B (adt'*"’)( mk:+1 - ZW::;;; +Wo L 1)
Wn+’ —v1—12yg
Lp= —-T“'—“—— K, = e oeHe
R I P b + cplp—1
Witdy =om; Wit =t¢m; Ky =¢m; Lrg =0;
©m, ¥m are the known values at the boundary.
It is easy to see that {bx]| > |akl -+ ekl + 6, 6 > 0.
ko) W
- I'“" n n n+i +1
qg:zlk = mk T g [Q(WmTI we +l )+ )(Wm,.vc2 - W:r.,k.‘l—l}] (2.7)
(K21+1£k§K,1,,+1)
bs) )
uphe = Leun o + K (2.8)
(K. +1<k<K}-1)
where

il
a(aW:;:'Ll +(1- a)ij: va

= 24z T (d2)2
P U S L
TR T (de? T TR T M)

+1 +1 +1 ﬂ,-l-j‘
U _ (Wil + (1= )W N1 = a)(uy, hy — it )

= =g 2dz
V(l - a), nt+i n+i ntl
+ (dz}2 (um,k2+1 2”’ 2 -l-u.m kn 1
Lpm e B - ﬁc—_ﬂc{‘-’m
k b + cpLlp— ! k b + cplp-1
u?ﬁ+flg-'° =Pm ; :;,+;1(1 =1tm; KK’ﬂn = Pm ; LK?,. =0

©ems Yrn are the known va,lues at boundary.

. 1 .
Remark. After finding u""'%, wrt¥ and q';+’ at the first half-time-step, for the other half-time-
step, we have to find g; by using the formula:

1 ﬂ+l 2
q;+2—p 1+(w2=) ’
where
atl nt} (un+12~)2



' 2
We shall obtain, u™*! and g5 !, and in order to find out wmt i, wotd and q’f‘i- *, we have to
find ¢"** as follows:

Q’f+'1 — pn+1 —+ (un-l-l)

2 v
where B .
n+l . n+l _ (wn+1)
P ‘12 “‘2 —

The above process is repeated until we obtain the results satisfying acceptable accuracy,

B. At the boundary points

To find u, w, ¢; and gy at the boundary points, we shall apply the method of characteristics
(see [3, 4]).
Equations (1.8) are written in vector form as follows:

avy L, oVi .,
= 2.
o TA Oz F*, (2.9)
where
3%y
u 0 0 2 5 s
Vi=lwij; A=[0 2¢ 0} ; F={/f]= 232w
a 2. 00 f3 Y qa?
0
3 2 _ -
and 38 or -53; (p + %—) can be choser as f§ at the previous (n-th) time-step.

The vector of left eigenvalues of the matrix A is A* = (A, A5,A3)} = (2,-2,2u) and the
corresponding matrix of left eigenvectors is

10 1 (f1 1 0
9y={10 -1] and G'=-10 0 2
01 0 2 1 -1 o0

Since A? (¢ = 1,2,3) are real different from each other, the equations (2.9) is a hyperbolic
system. After soine equivalent transformations for system (2.9), we obtain the formula:

o (.1
where n
o 1
n v ' (;dv_t")“
n=fa ) 2= = (5. |

™ AL

(%)

and (%) is the derivative along the direction of the characteristical line Eé— = A7, ie.
(%) aa? A*B“ . (i=1,2,3).
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This formula is rewritten as follows:
(£, + (), + (), - (), -

). -1 -

(%)x + (%)z_(%)w i (dditl_)?? —

It is necessary to know the values u, w and p at any boundary point, in order that the boun-
dary equations are closed, so except the given boundary conditions, the following complementary
equations for each boundary are derived from formaula {2.10) as follows:

- At the right boundary:

du dQ1 _ iz ’
and if © > 0 we shall have one more equation:
rdw "
(F).. =% (2.12)
- At the left boundary: g J _
“ny (S s
( dt)mg ( di ) g fi (2'13)

and if u < 0 we shall have one more equation (2.12).

By the same way, we derive from (1.7) the following equation:

BVy  _aVa ..
5 B =T (2.14)

v u B 2w 0 0 . _}ff - 21/——322
2= w]; =0 0 2j; F=|fl= w )
) 02 0 2 0 f; 21’—“—"‘822 - 2 1 - g
0

The matrix B has the vector of left eigenvalues X* = (A}, A3, A%} = (2, —2, 2w) and the matrix
of left eigenvectors

& 01 1 {0 o0 -2
OQp={d|=101 -1} ; and ngl=-§ -1 -1 0 |.
&3 10 0 -1 1 ©

We obtain the complementary equations at the boundaries as follows:

(@ (), =5 (219

and if w > 0 we shall have one more equation:

where

- At the upper boundary:

(i—:’) L= : (2.16)
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- At the lower boundary:
iui
dt

(%) (

dga

dt

)zz = f3

and if w < O we shall have one more equation (2.16).

3. Numerical results of the practical prob

lem

We apply now the algorithm mentioned above to calculate the pressure on the vertical two-

dimensional valve described as follows: z

h is the water-depth of the sluice

b is the width of the valve

@ins Jous ale the input-discharge and the out-
put-discharge

R is the radius of the valve,

ABC is the valve, where AB is a straight line,
BC is a part of circle with radius R,

£

RN

and AB is the tangent line of BC at B
DE is the free surface

We have to determine the pressure field on the valve ABC, with the given ED (ED is the free
surface). Basing on these conditions, we have steady equations:

+wau+
8z  Or

+w3w + ap
dz  Jz

a

-w_o,

i

du
3z
w
dz
du
3z

17

U

where v = 0.00001

We add to these equations the unsteady components and we shall obtain unsteady equations
like (1.3}, (1.5) and apply the algorithm for interior points and boundary points mentioned above.
Thus the numerical solutions are obtained. However, for these solutions and for the correctness of
the problem, we have to impose the boundary conditions on each boundary as follows:

We call uy as the projection of velocity vector on normal to the boundary (# is the normal
unit vector to the boundary at each boundary point directed out of the region). Then at solid

boundary, we have:

uz =0 (3.1)
- At the free surface: p=0 {3.2)
- At the soft boundary:
+ for the outflow: w = p(z, 2,1t} (3.3)
or u = y¥(z, 2,t) (3.4)
+ for the inflow: u=n(z,z1) (3.5)
or w = ¢[z,2,t) (3.6)

where ©(z, 2,8}, ¥{2, 2,t), n(z,2,t), ¢(z, 2,t) are given values,

Thas, at each boundary sort we have
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1) At the lower boundary
a) If the boundary is solid: Consider (2.16}, (2.17) and (3.1).
b) If the boundary is soft, at which water flows out (w < 0): Consider {2.16), (2.17), (3.3} or
(3.4).
2} At the upper boundary:
The boundary is. the free surface: Consider (2 15), (3 1), (3_2)

" 3) At the left boundary:
a) If the boundary is soft, at which water flows in: Consider (2.13), (3.5) and (3.6)

b) If the boundary is solid: Consider (2.13), {2.12} and (3.1)

4) At the right boundary:
a) If the boundary is solid: Consider (2.11}, (2.12) and (3.1)
b) If the boundary is the free surface: Consider (2.11), (2.12) and (8.2)

Remark. We consider the case where the boundary is an oblique line (i.e. It is not parallel neither
to Oz nor Oz). Since our equations are splitted into two calculating process corresponding to
Oz~ and Oz-direction, for the interior points along Oz direction we shall consider these oblique
boundary with Oz, and for the interior points along Oz-direction we shall consider these oblique
boundary points as boundary points being in parallel direction with Oz. Each oblique boundary
point corresponding to the above cases is arranged in the lower, upper, left and right boundary.

—th

Applying successive iterative process to the above algorithm until at the n™*" step, where the

values u, w, p satisfy:

ma.x u;‘n‘k - um+; < s'um kl
Iwmk—wmk $s|w,’,‘1‘k|
max [P = Pt | < el el

{where £ is a precision), we shall stop and the numerical solution of the steady problem mentioned
above is thus obtained.

Numerical results well conform to the experimental resulis carried out at Institute of Hydraulic
Scientific Research in Vietnam.

The investigation shows that the numerical results are stable after 100 iterative steps and the
relative error is about 0.15 + .17

This algorithm can also be applied to problem of the same models where the depth and the
angle of inclination between the valve and the Oz-axis are arbitrary.

‘We conclude this paper with two results described in Fig.2 and Fig. 3 respectively, and the
data given in Table 1.

Table 1
Variants Data
‘?in. = qout h b R E AB BC CD
(m®/s) {m) (m} - (m)  {deg)  (m) (m) (m}
Fig.2 0.105 0.6 0.5 0.26 45° 0.32 0.6 0.1
Fig. 3 0.001044  0.48 0.5 0.25  30° 0.42 0.2 0.1
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Fig. 2 Fig. 8
Comparison computed and measured pressures on the vertical two-dimensional valve of a sluice
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TINH AP LUC LEN CTA VAN

Bii bio trinh by phwong phap s6 tinh 4p lwc 1én cia van hai chigu ding, nh¥ hé phwong
trinh Navier-Stokes. Hé& phwong trink Navier-Stokes khdng dirng hai chitu déng dwoe phin ri
thanh hai hé phwong trinh con khéng dirng mét chidu. Cac tic gid st dung so d5 sai phin 4n vi
phwong phép truy dudi theo tirng phwong 42 gili tng hé phwong trinh con. Tai cic diém bién
nghiém dwoc tim bing phwong phip d4c trung.
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