STRENGTHENING BALANCE OF MOTION OF GYROSCOPE ON MOBILE BASIS

Nguyen Thanh Mau
Hanoi National University

In machine dynamics the balancing of gyroscopic system has a long tradition. In many textbooks the contributions to this topic are made regarding rigid gyroscope (see c.g. Huyen P., Mau N. T. [1-4]). The problems related to elastic multibody systems are more complicated. A good survey of recent results was presented by Anperin L. B. [5], Mau N. T. [6].

In a balancing problem usually there is asymptotic feature. However, in results of authors there are centenary elements. So a time expand, the balancing nature of gyroscopic system has been destroying.

In this paper author considers the balanced gyroscope with elastic symmetric axes on the mobile basis. The equations of motion of gyroscope have been represented in uncountable by degree units. The differential equation system is coming to the standard form, which can be solve by the method of separation motion. Computed result is the exponential function so centenary element destroyed.

1. The equation of motion of Gyro

Suppose that we have the gyroscope which satisfying the equation (1.4) in $\{1\}$, where $v_{1}=$ $v_{2}=0 ; v_{3}=\omega$ - const and $L x_{2}=-n \dot{\alpha}-\ell \alpha ; L y_{2}=-n \dot{\beta}-\ell \beta$.

Similary to the former work: n - coefficient of liquid bearing friction;
α, β - inclined corner of outside and inside frame;
ℓ - coefficient of deformation symmetric axes. So generally, the system of equations (1.4) in the standard form will be written as:

$$
\begin{align*}
& \quad \frac{d x}{d t}=W_{1} ; \quad \frac{d y}{d t}=W_{2} \\
& \mu A(y) \frac{d W_{1}}{d t}=-\mu\left[d_{2} W_{1} W_{2} \sin ^{2} y+W_{2} \omega \cos y\left(d_{2} \cos y-d_{3}\right)+C_{1} \frac{\omega^{2}}{2} \sin 2 x \cos ^{2} y\right. \tag{1.1}\\
& \left.+\frac{\omega^{2}}{2}\left(d_{4}-d_{3}+d_{0} \sin ^{2} y\right) \sin 2 x\right]-\left(W_{2}+\omega \sin x\right) \cos y-\chi n W_{1}-\ell x \\
& \mu d_{3} \frac{d W_{2}}{d t}=-\mu\left\{W _ { 1 } \left[d_{0} \omega \cos x-d_{2}\left(W_{1} \sin y+\omega \cos x \cos y\right) \cos y\right.\right. \\
& \left.+d_{2} \omega \cos x\left(W_{1} \sin y+\omega \cos x \cos y\right) \sin y\right\}+W_{1} \cos y-\omega \cos x \sin y-\chi n W_{2}-\ell y .
\end{align*}
$$

Initial condition for the system (1.1) is

$$
x(0)=x_{0} ; \quad y(0)=0 ; \quad \dot{x}(0)=\dot{y}(0)=0
$$

Since the system (1.1) has balancing position (0,0), we study the motion of gyroscope around this position. It is supposed that x and y are small.

2. Asymptotic solution

In the same way as the work [1], we will give the solution of the system (1.1) outside and inside boundary layer
a) At " 0 " order of small parameter μ, and outside boundary layer the solution will be

$$
\begin{align*}
& \cos y^{(0)} \frac{d y^{(0)}}{d t}+\omega \sin x^{(0)} \cos y^{(0)}+n \chi \frac{d x^{(0)}}{d t}+\ell x^{(0)}=0 \\
& \cos y^{(0)} \frac{d x^{(0)}}{d t}-\omega \sin y^{(0)} \cos x^{(0)}-n \chi \frac{d y^{(0)}}{d t}-\ell y^{(0)}=0 \tag{2.1}
\end{align*}
$$

Initial condition of (2.1) is:

$$
\left.x^{(0)}(t)\right|_{t=0}=x_{0} ;\left.\quad y^{(0)}(t)\right|_{t=0}=0
$$

The solution of the system (2.1) will be found by Poincare sum

$$
\begin{align*}
& x^{(0)}=x_{1}^{(0)}(t)+\varepsilon x_{2}^{(0)}(t)+\varepsilon^{2} \ldots \\
& y^{(0)}=y_{1}^{(0)}(t)+\varepsilon y_{2}^{(0)}(t)+\varepsilon^{2} \ldots \tag{2.2}
\end{align*}
$$

Replacing the formula (2.2) into (2.1) and keeping elements "0" order of small parameter ε, we obtain

$$
\begin{aligned}
& \frac{d y_{1}^{(0)}}{d t}+\omega x_{1}^{(0)}+n \chi \frac{d x_{1}^{(0)}}{d t}+\ell x_{1}^{(0)}=0 \\
& \frac{d x_{1}^{(0)}}{d t}-\omega y_{1}^{(0)}-n \chi \frac{d y_{1}^{(0)}}{d t}-\ell y_{1}^{(0)}=0
\end{aligned}
$$

Multiplying the second equation on the i-supposed and adding one to the first, we receive equation:

$$
(i+n \chi) \frac{d}{d t}\left(x_{1}^{(0)}-i y_{1}^{(0)}\right)+(\omega+\ell)\left(x_{1}^{(0)}-i y_{1}^{(0)}\right)=0
$$

The solution of this equation can be represented in the form:

$$
\varphi(t)=\varphi(0) e^{-\omega_{0}(n x-i) t}
$$

where:

$$
\varphi(t)=x_{1}^{(0)}-i y_{1}^{(0)} ; \quad \omega_{0}=\frac{\omega+\ell}{1+n^{2} \chi^{2}}
$$

Accordingly result preserted by aspect:

$$
\begin{equation*}
x_{1}^{(0)}(t)=x_{0} e^{-\omega_{0} t} \cos \omega_{0} t, \quad y_{1}^{(0)}(t)=-x_{0} e^{-\omega_{0} t} \sin \omega_{0} t \tag{2.3}
\end{equation*}
$$

At the "first" order of small parameter μ we have the following system:

$$
\begin{align*}
& \quad \frac{d x^{(1)}}{d t}=W_{1}^{(1)} ; \quad \frac{d y^{(1)}}{d t}=W_{2}^{(1)}, \\
& W_{2}^{(1)} \cos y^{(0)}+\chi n W_{1}^{(0)}+\ell x^{(1)}+\omega x^{(1)} \cos y^{(0)} \cos x^{(0)}-y^{(0)} \sin y^{(0)}\left(W_{1}^{(0)}+\omega \sin x^{(0)}\right) \\
& =-\left(d_{0} \cos ^{2} y^{(0)}+a_{2}+C_{1} \sin ^{2} y^{(0)}\right) \frac{d W_{1}^{(0)}}{d t}-W_{1}^{(0)} W_{2}^{(0)} d_{2} \sin 2 y^{(0)} \\
& -W_{2}^{(0)}\left(d_{2} \cos 2 y^{(0)}-d_{3}\right) \omega \cos x^{(0)}-\omega^{2} \sin 2 x^{(0)}\left(C_{2} \cos ^{2} y^{(0)}+d_{0} \sin y^{(0)}+d_{4}-d_{3}\right), \tag{2.4}\\
& -W_{1}^{(1)} \cos y^{(0)}+\omega x^{(1)} \sin x^{(0)} \sin y^{(0)}+n \chi W_{1}^{(0)}+\ell y^{(1)}+y^{(1)}\left(W_{1}^{(0)} \sin y^{(0)}+\omega \cos x^{(0)} \cos y^{(0)}\right) \\
& =-d_{3} \frac{d W_{2}^{(0)}}{d t}+\left(W_{2}^{(0)}\right)^{2} d_{2} \sin y^{(0)}-W_{2}^{(0)} \omega \cos x^{(0)}\left(d_{0}+d_{2} \sin y^{(0)}\right)-\frac{\omega^{2}}{2} d_{2} \cos ^{2} x^{(0)} \sin y^{(0)}
\end{align*}
$$

Initial condition is:

$$
\left.x^{(1)}(t)\right|_{t=0}=0 ;\left.\quad y^{(1)}(t)\right|_{t=0}=0
$$

The solution of the system (2.4) will be found in the form:

$$
\begin{align*}
x^{(1)}(t) & =x_{1}^{(1)}(t)+\varepsilon x_{2}^{(1)}(t)+\varepsilon^{2} \ldots \\
y^{(1)}(t) & =y_{1}^{(1)}(t)+\varepsilon y_{2}^{(1)}(t)+\varepsilon^{2} \ldots \tag{2.5}
\end{align*}
$$

In the same way, at the "zero" order of parameter ε, we have

$$
\begin{align*}
& n \chi \frac{d x_{1}^{(1)}}{d t}+\omega x^{(1)}+\ell x^{(1)}+\frac{d y_{1}^{(1)}}{d t}=-\left(d_{0}+a_{2}\right) \frac{d W_{1}^{(0)}}{d t}-\omega W_{2}^{(0)}\left(d_{0}-d_{3}\right)-\omega^{2} x^{(0)}\left(C_{1}+d_{4}-d_{3}\right) \\
& -\frac{d x_{1}^{(1)}}{d t}+\omega y_{1}^{(1)}+\ell y^{(1)}+n \chi \frac{d y_{1}^{(1)}}{d t}=-d_{3} \frac{d W_{2}^{(0)}}{d t}-\omega d_{0} W_{1}^{(0)}-\omega d_{2} y^{(0)} \tag{2.6}
\end{align*}
$$

with the initial condition

$$
x_{1}^{(1)}(0)=y_{1}^{(1)}(0)=0
$$

Analogously, we have:

$$
(n \chi-i) \frac{d \psi(t)}{d t}+(\omega+\ell) \psi(\ell)=f(t)
$$

where

$$
\begin{aligned}
\psi(t)= & x_{1}^{(1)}-i y_{1}^{(1)} \\
f(t)= & -\left(d_{0}+a_{2}\right) \frac{d W_{1}^{(0)}}{d t}-\omega W_{2}^{(0)}\left(d_{2}-d_{3}\right)-\omega^{2} x^{(0)}\left(C_{1}+d_{4}-d_{3}\right) \\
& -i\left(d_{3} \frac{d W_{2}^{(0)}}{d t}-\omega d_{0} W_{1}^{(0)}-\omega d_{2} y^{(0)}\right) .
\end{aligned}
$$

The solution of the system (2.6) has the form

$$
\begin{equation*}
x_{1}^{(1)}(t)=x_{0} t g\left(\omega_{0} t\right) e^{-\omega_{0} t}, \quad y_{1}^{(1)}(t)=x_{0} t h\left(\omega_{0} t\right) e^{-\omega_{0} t} \tag{2.7}
\end{equation*}
$$

where: $g\left(\omega_{0} t\right) ; h\left(\omega_{0} t\right)$ are harmonic functions. Now, we study the motion of Gyro at the "first" order of parameter μ. It is necessary to define the solution of the system (2.4) to the "first" order of parameter ε. In other word, we consider the system quasi receiving at the "first" order of parameter ε :

$$
\begin{align*}
& \frac{d y_{2}^{(1)}}{d t}+n \chi \frac{d x_{2}^{(1)}}{d t}+\omega x_{2}^{(1)}+\ell x_{2}^{(1)}=0, \\
& n \chi \frac{d y_{2}^{(1)}}{d t}+\omega y_{2}^{(1)}+\ell y_{2}^{(1)}-\frac{d x_{2}^{(1)}}{d t}=0 . \tag{2.8}
\end{align*}
$$

with initial condition is: $x_{2}^{(1)}(0)=y_{2}^{(1)}(0)=0$. It is easy to see that: the solution of (2.8) is zero function:

$$
x_{2}^{(1)}(t)=0 ; \quad y_{2}^{(1)}(t)=0
$$

Now, we give the solution of system (1.1) inside boundary layer.

3. Solution inside the boundary layer

The system (1.1) inside boundary layer can be written as:

$$
\begin{align*}
\frac{d x}{d \tau}= & \mu W_{1} ; \quad \frac{d y}{d \tau}=\mu W_{2} ; \quad \mu \tau=t \\
A(y) \frac{d W_{1}}{d \varepsilon}= & -\mu\left[d_{2} W_{1} W_{2} \sin 2 y+\omega W_{1} b \cos x\left(d_{2} \cos y-d_{3}\right)+\frac{\omega^{2}}{2} \sin 2 x C_{1} \cos ^{2} y\right. \\
& \left.\left.+d_{0} \sin ^{2} y+d_{4}-d_{3}\right)\right]-\left(W_{2}+\omega \sin x\right) \cos y-\chi n W_{1}-\ell x \tag{3.1}\\
d_{3} \frac{d W_{2}}{d \tau}= & -\mu\left\{W_{1}\left[d_{0} \omega \cos x-d_{2}\left(W_{1} \sin y+\omega \cos x \cos y\right)\right]+d_{2} \omega \cos x\left(W_{1} \sin y\right.\right. \\
& +\omega \cos x \cos y) \sin y\}+W_{1} \cos y-\omega \cos x \sin y-n \chi W_{2}-\ell y
\end{align*}
$$

At "zero" order of μ we have

$$
\begin{align*}
& \quad \frac{d x^{(0)}}{d \tau}=0 ; \quad \frac{d y^{(0)}}{d \tau}=0 \tag{3.2}\\
& A^{(0)}\left(y^{(0)}\right) \frac{d W_{1}^{(0)}}{d \tau}=-\left(W_{2}^{(0)}+\omega \sin x^{(0)}\right) \cos y^{(0)}-n \chi W_{1}^{(0)}-\ell x^{(0)} \\
& d_{3} \frac{d W_{2}^{(0)}}{d \tau}=-W_{1}^{(0)} \cos y^{(0)}-\omega \cos x^{(0)} \sin y^{(0)}-n \chi W_{2}^{(0)}-\ell y^{(0)}
\end{align*}
$$

The initial condition for the system (3.2) is:

$$
y^{(0)}(0)=x^{(0)}(0)=0, \quad W_{1}^{(0)}(0)=\chi n \chi_{0} \omega_{0}, \quad W_{2}^{(0)}(0)=\chi_{0} \omega_{0}
$$

It is easy to show that: $x^{(0)}(\tau)=y^{(0)}(\tau)=0$. So accordingly we have

$$
\begin{align*}
\left(d_{0}+a_{2}\right) \frac{d W_{1}^{(0)}}{d \tau}+n \chi W_{1}^{(0)}+W_{2}^{(0)} & =0 \tag{3.3}\\
W_{1}^{(0)}+d_{3} \frac{d W_{2}^{(0)}}{d \tau}+n \chi W_{2}^{(0)} & =0
\end{align*}
$$

The solution of the system (3.3) is represented in the form

$$
\begin{align*}
& W_{1}^{(0)}(\tau)=e^{-K_{3} \tau}\left[C_{1}\left(\frac{\chi n a_{2}}{2 a_{0}} \cos K_{2} \tau+\frac{K_{1}}{2 d_{0}} \sin K_{2} \tau\right)+C_{2}\left(\frac{n \chi a_{2}}{2 d_{0}} \sin K_{2} \tau-\frac{K_{1}}{2 d_{0}} \sin K_{2} \tau\right),\right. \\
& W_{2}^{(0)}(\tau)=e^{-K_{3} \tau}\left(C_{1} \cos K_{2} \tau+C_{2} \sin K_{2} \tau\right) \tag{3.4}
\end{align*}
$$

where

$$
C_{1}=x_{0} \omega_{0} ; \quad C_{2}=-\frac{1}{K_{1}}\left(2 d_{0} x_{0} n \chi \omega_{0}-a_{2} \omega_{0} n \chi x_{0}\right)=-\frac{\omega_{0} n \chi x_{0}}{K_{1}}\left(2 d_{0}-a_{2}\right)
$$

and

$$
K_{1}=\sqrt{4 d_{3}\left(d_{0}-a_{2}\right)-\chi^{2} n^{2} a_{2}^{2}} ; \quad K_{3}=\frac{n \chi}{2 d_{3}} ; \quad K_{2}=\frac{K_{1}}{2 d_{3}\left(d_{0}+a_{2}\right)} .
$$

At "first" order of μ we obtain

$$
\frac{d x^{(1)}}{d \tau}=W_{1}^{(0)}, \quad \frac{d y^{(1)}}{d \tau}=W_{2}^{(0)}
$$

From this system of equations we have

$$
x^{(1)}(\tau)=\int_{0}^{\tau} W_{1}^{(0)}(\tau) d \tau ; \quad y^{(1)}(\tau)=\int_{0}^{\tau} W_{2}^{(0)} d \tau
$$

