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1. Introduction

Torsional vibrations of transmission systems are often encountered in mechanical engineer-
ing. Torsional vibration analysis of linear systems has drawn the attention of investigators {1-4].
However, such an attention to nonlinear systems has not been paid properly.

In this paper our objective is to examine simple resonance solutions for a torsional vibraticn
system of three variable generalized masses by using the small parameter method [5].

2. Differential equations of vibration

Let us consider a nonlinear torsional vibration system of three variable generalized masses as
shown in Fig.1
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In technical practice, it is often the case that J; = const while J; and J3 depend on #; so
that

Ji = Joi + Jricos 24,

where Jo; and Jy; are constants.

For more explicitness, we consider the case when 1,51 = {1 = const and the angles ¢ and 3
can be written in the form '

b=t (i=2,3). - (2.1)

Further, it iz agsumed that the damping coefficients bf.l), b‘(.s) and nonlinearly elastic coefficients
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653) are small, while reduced moments of inertia are written in the form:

Ji=Ju (1 + % cos 211);) = Jg‘"(l + 5-.1?1; €08 21,0,-), (i =2, 3},

where ¢ is a small paramete:r

Taking into consideration a.ll assumptlons, the vibration differential equation of the system is
given under the form [6, 8] :

Mi+Ci=¢4, (2.2)

_Jde 0 P2 _ Cil-)‘f'ﬂél) —an] r_ [452] '
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The functions ¢2, ¢3 have the following expressions [8]
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where
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In order to have an equation in modal coordinates we make a coordinate transformation
relating physical coordinates § to the modal ones p'

=Vy ' (2.5)

g

in which V is the modal matrix. The matrix ¥ has the form [8]

1 1

1 1 .
v= [ (1) (3)] N (1) +c( : ~ Jogw} e{! )'i'cg) Joaw3 | (2.6)
he e D
€3
where
W2 o= c(zl]Joz + J,oa(c(;l) + c;l)) + \/[cél)']oz + JOS(cg_l} + c?))lz - 4cgl)cgl}-fog-f03
12= .

2Jo2.J03

Substituting the expression (2.5) into equation (2.2), we obtain the vibration differential equa-
tions in the modal coordinates :
P? + )\,-p,- = 'SF{ (27)
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in which

B = E a;y cos 2mrp; + Z(.:z,,_T gin 2mr + Gu r; + Z bi ;5 8in 2mrppg

1.k
-+ Z b,,k sin Zmer P+ Z c,yk sin ‘2’.1’1’1.1‘;7J pr + Z.C"J"’“ €08 2mrp; pr
1k o

+ Z(d;,-ke cos 2mt + dijkﬂ)?jpk?! +> ERRA

5k,e 3k
+ Z(%m sin 2m7p;prpy) + Z Eigke €08 2MTP;ppy

3kt gk,
+ " Frecos tmrpphpl + aisin2mr. (28)

sk, 2
The indices g, k, £ are taken for the values 1 and 2 and the coefficients in (2.8) are determined in [8].

3. Analysis of simple resonance

It is supposed that

A = n2(1—ea),
where n is an integer. By introducing the notations:
A= nz, Az = )g,
the equation {2.7) can be rewritten under the form:
P! + A;p; = e(F; + naélp;). (3.1)
In the first approximation we shall find the solution of (3.1) in the form:

p‘(o] = §}(Rcosnr + Ssinnr). {3.2)

According to {5] the condition for the existence of periodic solutions of period 2# implies that:

2

(0)y { cosnr _
f(F1+np )(smnf) dr =0, (3.3)
0

From this we obtain the amplitude-frequency equation as follows:
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The equation {3.4) shows that the following resonance cases might occur:
- Fundamental resonance: wy =, (m = n}.

. w
- Superharmonic resonance: wy = 5 {m = 2n).

20 3n

- Super-subharmonic resonance: wg = 5 (m= *2—) .

- Subharmonic resonance of 2*? - kind: wp = 201, (m = -g?)

2 . .
Consider now the super-subharmonic resonance for wy = 5 The equation (3.4) yield

3fA3 \szz 3ndgA3\2
2= - —
e = - + il (nb + y ) (3.5)

in which
__0
_ . p—=0, i e — ) — .= ) -
e=by1; b=ad; e=a1y e=di; f=dh; 9=dun; d=ci.

We can find the stability condition for this case with the help of the condition established in {5].

If the positive sign or the negative sign is choosen before the square root, the stability condition

will be respectively:

da dex .
a<0 or EZ>0. (3.6)

For the sclution 4 = 0, it becomes
.b<o, n?h? > —nZa’ (3.7)
From here we conclude that the solution A = 0 is always stable.
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After similar calculations for other cases we obtain the results presented in the table below

Resonance Caze Expression of Amplitude

wy=0(m=n) nla= —‘-?‘—%41 + ﬂ%\ﬂéaﬂ- eA?)? — (4nb + 3n°gA4?)?

2
e = %(m: 32—“) na = —3—f—f2 + \/c——zf’ - (nb+ 3——3-—"34A2)
W2=29(m= %) 1r1.2cz=--§'%-4—2

sz 4oca? | 3c47)? sn3ga)?
iA(fa1+3cA’;\/(a1+ 4 ) - ("b'i' 3 ) A?

w3=% (m=2n)

2
W= = (35 + %) a2 1 28— (b4 20g)

In Fig.2 the amplitude - frequence curve is plotted for the case m = 3n/2. The heavy line
corresponds to the stable vibrat_icrn and the dashed line - to the unstable one.
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In Fig.3 the result from computer simulation is presented for & = —10°. Comparing this
result with the one obtained in Fig.2: A ~ 0.087 for o = —1073, it is seen that these results are
coincident.
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4. Conclusion

The calculation of nonlinear parametrical torsional vibration presents a quite complicated
problem. In this paper an amplitude-frequency equation for a nonlinear torsional vibration system
of three variable generalized masses was set up. The result of analytical investigation perfectly
coincides with the ones obtained from computer simulation. The combined resonance vibration
will be given in an other publication.

This work is completed with finaricial support from the National Basic Research Programme
in Natural Sciences. ‘
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VE cAC CONG HUGNG PON CUA HE DAO PONG XOAN
PHI TUYEN €O BA KHOL LUGNG THU GON BIEN P01

Trong bai bédo nay d3 thi€t 13p dwgc phwong trinh bién d§ - t3n 56 cho mét hé dao ddng xoin
phi tuy&n ¢6 ba khéi lwrgng thu gon bidn d6i. Cic k&t quéd thu du-crc bing phwong phip gidi tich
phit hop véi cdc két qué, tha dwoc bing md phéng 8.
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