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STABILITY OF THE CRITICAL
- STATIONARY OSCILLATIONS

NGUYEN VAN DINH
Institute of Mechanics, Hanoi Vietnam

In {1], a preliminary study on the so-called critical stationary oscillations has been proposed.
In the present paper, some additional remarks on the second stability condition are of our interest.
It will be shown that the compact form of the mentioned condition can be established for ordinary
as well as for critical stationary oscillations, '

1. The two parts of the resonance curve

Stationary oscillations of the quasilinear oscillating system examined in [1] are determined
from the equations:

' {f}e = { A{A, ¢)u + B(A, a)v - E(A,a.)}ﬂ =0,
{g}, ={C(A,a)u+ H{A,a)v ~ K(A,a)}, =0,

where: f, g are polynomials of (A, g, u, v), linear relative to {u,v); the subscript “6” indicates that
u, v must be substituted by u(f) =sind, v(#) = cosf; other notations have been explained in [1].

(1.1)

In the plane R{A, a), the resonance curve C is defined as the ensemble of representing points
I{A, a) whose ordinate a is the amplitude of the stationary oscillations corresponding to the de-
tuning parameter abscissa O

In general, C consists of two parts: the ordinary Cy and the critical C;.
C1 lies in the ordinary region R; : Dy(A,a) # 0; it is given by the relationship:

_ Di(8,0)+D3(A8)
DZ(A,a)

Wi(A, a) 1=0. (1.2)

To obtain (1.2) we have imposed the trigonometrical condition u? + »? = 1 on the expressions:
u(A,0) = D1(8,a)/Do(A,a), +(B,a) = Dy(A, a)/Dy(A, a), (1.3)

which are the solutions in R; of the equations (1.1) considered as the algebraic ones of two unknowns
u, v (A, a play the role of parameters).

O lies in the critical region (curve) Ry : Do(A, ¢) = 0; it consists of critical representing points
I.(A., a.). If the matrix {Dy] is assumed to be of rank 1, C; is determined by the compatibility
conditions (1.4) and the trigonometrical restrictions {1.5):

Do(A,a) =0, Di(A,a)=0, Di(A,a)=0, (1.4)
A*+B%> E%, G*+ H?2> K2 (1.5)

The conditions (1.4) assure the compatibility of the “linear” system(1.1) at I. (they determine
compatible points I'{A’, a’)), while (1.5) assure the resolvability of the “irigonometrical® system
(1.1) at I, (they distinguishe critical representing points from compatible ones). Usually, instead
of (1.2), the following relationship is used:

W(A,e) = D%(A,a) + D3(A,a) — D2(A,a) =0 (1.6)
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Obviocusly, {1.6) contains all the two parts (3, Ca. However, (1.2) as well as (1.6) cannot be
considered as the equation of the “whole” resonance curve C' = € U Ca: (1.2) does not contain
'z while (1.6} contains ‘in surplus” compatible non critical points (satisfying(1.4) but not (1.5)).

2. Singularity and trigonometrical restrictions
Critical points'], satisfy the necessary conditions of singularity:
oW aw
MY Zo, () =0 3
(BA )* da /-« 0 (21)

In practice, they are singular points of the carve W = 0. To determine the type of singularity of
the critical point I.{A.,a.), we use the development of W{A,a) in its vinicity:

W(a-A,a—a,)= %63W+... (2.2)

where .
52W = Ago(a - E*)z + 2A11(a el a*)(A - A*) + ADQ(A - ﬁ*lz,

Fitiw o

iy = (60}'8153'), ("":J =01, 2)'
We shall base our discussion only on §2W, assuming that §2W #£'01i.¢. A3, + A3, + A3, #0. TIn
this case, the singularity depends on the sign of the discriminant:

D. = A} - AzpAo (2.3)

namely: - if D: >0, I is a nodal point,

-if D, <0, I, is an isolated point (as it will be shown below, in this case, the point of-
interest is a compatible non critical).

The caze D. = 0 requires a more detailed study.

It is noted that there exist certain liaisons between the singularity and the trigonometrical
restrictions. Indeed, sinee rank [Dg] = 1, we can assume that A, # 0. By (1) (2) we denote two
trajectories in R passing through I..

The expressions (1.3) are the solutions of the “algebraic” equations (1.1) in Rjy. Therefore we
have along (1) (2) an identity:

A(A,a)Di(A,a) + B{A,a) D2 (A, ) — E(A,a)Do(A, a) = 0. (2.4)

Se, by differentiating along (1) (2), we obtain at I,:

8D, .8D: 3D, 8Dy aD, .
(AaA +B3 EBA)*+(A8 +B Eaa)*k,-—o (=1,2), (2:5).

where k; is the slope of the trajectory (i) at L.
Since ky # ko, from (2.5), it follows:

(453 +85 - 252). =0 = (G3).

i (B8 ~555).

2.6)
8D, 8D, 8Dy 8Dy _ 1 3Dy 38D, (
(AB +B da Eaa)*—o or (aa)*_A_*(Eaa, —Baa)*-
Using (2.6), the discriminant D, can be transformed into:
3Dy 8Dy . 8D3 8Dg\2
D, = —(A*+ B% - %), (S22 - =220 2.7
Az( * (32 e~ e 3a) 27
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This relation shows that:

-If D, > 0, then A2 + B? > E?: the nodal point I, satisfying the trigonometrical restrictions
is a critical point.

.« If D, <0, then A% + B2 < E?: the isolated point does not satisfy the trigonometrical
restrictions; it is only a compatible non critical point and does not belong to C,.

3. The dephases of stationarjr oscillations

For ordinary stationary oscillations i.e. on C1, the dephases are given by (1.3):
sind = u(f) = u(A,a), cosf = v(f)=0v(da). o (3.1)

Let I,(A., a.) be the critical point of interest. The corresponding dephases 8, are determined
- for instance - from the first “trigonometrical® equation of the system (1.1):

Aysind + Bocosd —E,. =0 (3.2}

or, by the “algebraic” system:
A+ Bv—E, =0 (3.3a)
W +P =1 , (3.3b)

The critical dephases can also be determined by (1.3) “at limit”. In R;, by suitable trajectories
«, we call those passing through I, and admitting (at I.), as slope, any root k of the equation:

Agokz + 2A11]c -+ Aog ={ - {34)

(each k corresponds to a “family” of trajectories of the same tangent at I,; for simplicity, this
family is called one trajeciory). The gnadratic equation (3.4} has jusé D, as discriminant.

If D, > 0 (nodal point) we have two suitable trajectories; if D. = 0 - only one; f D, < 0
(isolated non critical point), suitable trajectories do not exist.

At every point I{A,a) of v, we have:
A(A, a)u(A, e) + B{(A,a)v(A,6) - E(A,a) =0. (3.5)
When I moves along v and tends to I, by continuity, at L., we have: V

A limu(A,e) + B.v(A,0) - B, = 0.  (3.6)

Suppose that the two limits of u(A, a), v(A, a) are given by:

imate )= im (U03) - (/42

limv(A, a) = lim (gi{i:gi) = (iﬁz/iﬁ))*,

(58).~ (). (), =0

Regarding to (3.4}, we can write:

(3.7)

where

' 1

(limu(A,a))’ + (kmo(A, )’ — 1 = ~ {A20k2 +241k+ A0} =0, (3.8)

().
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1= (Fmmn). ={(3) () + (52 (32) - (52 (32) ) 6+a=2)
The expressions (3.8) (3.8) mean that limu(A, ¢}, imv(A, a) satisfy (3.3a,b) i.e we have:

u, = limu(A, a), v =limv(A,a) ' {3.9)
Remark. If A2 = 0, one root k = co.

4. The compact form of the second stability condition

The second (sufficient} condition for asymptotic stability is:

5= {2 (%20 - (:3; ~2) >0, ()

On Cy, l.e. for ordmary stationary oscillations, regarding to (3. 1) 85 can directly be expressed
through (4, a):

{Bf(ag 20,) 9931, 9f

52=15:\5u" 750 " 3a\Fu’ " v )}H(A,a),um,a)>0

= (4.2)
We remark a.ga,m that (1.3} is the solution of the “algebraic” system (1.1) in R;. So, in Ry, we
have:

-~ f(A,a,u(A,0),v(A,a)) =0,

4.3
9(A, e, u(A, a),v(A,a)) =0. (+3)
Differentiating {4.3) relative to a, we obtain
8 afa af a
%f = _(_f_u Lo as)
da duda  dvda (4.4)

dg dg du  dgdv
da (Bu da * 3 dv Ba)

Using (4.4), on R,, the expression inside the curly bracket of {4.1) can be written as (u, v substi-
tuted by (1.3}}): :
af dg dgrdf 8f )__ 1 _ 3w,

da (Bu v ) da (au dv 2DP da (4.5)
Obviously, {4.5) is valid on €y, too. Therefore, for ordinary stationary oscillations, the second
stability condition takes the form:

1 W
S2(8,a) = Do - = > 0. (4.6)

On R;, we have W(A,a} = D3W, (4, a); so, on R;:

lp _....__an = 3 ﬂ — _l_W__uaDO (4.7)

On €4, Dy # 0, W = 0, we have;

1 W .

The stability of ordinary stationary oscillations is doubtful:
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3 aw

- At ordinary singular point where Dy # 0, W =0 (:EJK =0 too)

- At the ends (of ordinary portions} having ve;rt.xca.l tangents (parallel to the a-axis): along
(4, the slope is determined by

AW da W . -~ . da aw .

420 if — —0, then —— — 0.
Bada 3h 0 Maa T B -
For critical stationary oscillations, {u, v) must be substituted by (., v.) which are the limits (along
suitable trajectories) of u{A, a), v{A, a) respectively, Therefore, we can write:

: 3 '
S =tim {3 (500~ 50 - 5e (o= 309} >0 (9
Regarding to {4.7), S2. can be written as:
Sg*=m{5%6%}—um{_w§—?ﬂ >0, (4.10)
%%9— is a polynomial, its limit is finite. Otherwise,
hmg; =hm(gz +g%—1) =u3+uf'—150.
Finally, we have:
| a0 = 1im{—2—;;%%/-—} >0 (4.11)
or
Spo = lim{a(;Z1 (go) + 1: (—g;) - %} >0, (4.12)
d oW 1 ‘ 3D aD
- AT S =S [0 0

5. Stability of the critical nodal point

Let us examine in detail the stability (in the sense of the second stability condition) of a
critical nodal point I,{A,,a.) - the intersection point of two ordinary portions (1) (2) - at which
D, > 0.

The portions {1} {2) are just two suitable trajectories; I. represents two critical stationary
oscillations with dephases f.; corresponding to two slopes k; (i = 1,2) of the portions (1) (2)
respectively

We examine the point S (I considered as an element of (1)) and suppose that the portion
(1) is stable i.e. along (1) we have S; > 0. By continuity:

5% = lims; > o. (5.1)
However, §5, cannot be equal to zero. Indeed, S:(,l) = 0 leads to; |

Agok + Ay =0. (5.2)
From (5.2) (3.4} it follows D, = 0, in contradiction with the hypothesis on nodal point.
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Thus I{*) is stable as the portion (1).- In general, the stability character of a nodal critical
point J, is the same as that of ordinary portion considered as containing it.

Remark 1. If the tangent of the portion (1) at [, is vertical, SZ(:) = 0, the stability is doubtful.
Indeed, k; = 0, the first coefficient of the quadratic equation (3.4) is equal ta zero:

to=2{(222)" 5 (222)" - (322)*) =0 69

i (222)* =0, then (aDl)* = (%)* = 0, therefore {from (4.12}) Séi} =

da da da
3Dy, ]
If ( 52 )* # 0, from (3.7} (3.9} we deduce:
4D, 3D,
uz(aa)* v*__(ad.)*
* (300) ’ (aDo)
-Oa ® aa. *
and. from (4.12):
(1) _ 1 aD\2 aD;y\2 _ 3D0)2 _ Ao _
Sox (BDD) {( da )* * ( da )* ( da *} 2(6D0) 0- (5:4)
Bcr. * ‘Ba. *
Remark 8. If D, = 0, the stability is doubtful, too, Indeed, in this case, there exists only one
suitable trajectory with k& = —ay;/Azq. Therefore, the numerator of (4.13} vanishes and we have
Ss = 0.
Conclusions

The analysis presented above show that, for eritical stationary oscillations, the compact form
of the second stability condition is the limit of that of the ordinary stationary oscillation. The
limit must be done on suitable trajectories. For critical nodal peints, the stability character can
directly be deduced from that of the ordinary portion considered as containing them.

This publication is completed with financial support from the National Basic Research Pro-
gramme in Natural Sciences.
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ON PINH CUA DAO PONG DUNG TOT HAN
Khdo sdt dién kién én djnh thé hai cda dao dong dirng t&i han. Dang gon cda di¥u kién nay

13 giéi han cda dang gon cda dao ddng dirng thudng. Giéi han ndy tién hinh trén quy dao thich
hop.
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