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GENERALIZED DIFFUSION THEORY 
OF HYDRODYNAMICAL PARTICLE 

MIGRATION IN SUSPENSIONS 
Part 1: The case of equal densities 

NGUYEN VAN D!EP 

Instt."t-ute of Mechanz'cs, Hano1.' y,·etnam 

Abstract. The general continuum theory has been developed for two- phase flows of fluid with 

deformable particles, where the micro- deformation of particles and the relative motion between 

phases have been taken into account [1-3]. 

This paper is concerned with using the simplest model from developed general theory for 

modeling of particle migration in suspensions- one of the most important and complicated aspects 

of particle-- liquid two- phase flows, that has been observed and studied by many authors. For this 

purpose it is considered the motion of Newtonian fluid- rotating rigid spherical particles two- phase 

continuum with specialized nonlinear constitutive equations, when the particle and fluid have equal 

densities. 

The obtained equation system has b.een used for studying quantitatively particle migration 

problem in the circular Couette flow. 

Introduction 

One of the most important and complicated aspects of particle- liquid two- phase flows is 
problem of particle migration. For example, many experiments show that for up- flow in a circular 
test section the bubbles tend to migrate toward the wall and thus the void fraction profile has a 
distinct peak near the wall. In contract, for down- How the bubble tend to migrate toward the 
center of the pipe [4, 5]. The particle migration is observed also in gas- solid particle fiow [6], and 
in concentrated suspensions [7, 8]. 

Several mechanisms have been proposed to explain theoretically the lateral migration phe~ 
nomena. For examples, the particle migration in two- phase flows explained by the lift force due 
to shear stress was analytically derived by Saffman [9] and the lift force due to particle rotation 
derived by Rubinow and Keller [10]. These forces are extended and included in the equations of 
motion for every computational particle by applying the Euler- Lagrange approach for numerical 
simulation of gas- solid two- phase fiow [11]. The constitutive equation for the particle fiux, orig­
inally proposed by [12] in one dimension, is implemented in general two- dimensionalllows with 
arbitrary geometry ·and boundary conditions, and is used for the numerical predictions of particle 
migration in transient circular and eccentric circular Couette How [7, 8]. 

In [1-3], by analyzing the forces causing the migration of particles, it can be shown that 
to describe and pi-edict particle migration phenomena, it is necessary to consider the nonlinear 
constitutive equations. For this purpose it is assumed that phenomenological coefficient of the 
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non- linear part of the constitutive equations depend to first order on generalized diffusion flux. 
Moreover, these "generalized migration forces" are of a gyroscopic nature. This means that there 
is no contribution to the total dissipation of :H.ow energy. Taking into account the macro·isotropy 
of a mixture, the no· dissipation property of nonlinear part of constitutive equations, and using 
the theory of isotropic tensors one constructed specialized nonlinear constitutive equations. This 
ge11eralized developed theory was demonstrated in the case of rigid spherical particle fluid two­
phase flow. The obtained equation system has been used to study quantitatively the· particle 
migration in the infinite vertical circular cylinder in result of the constant pressure gradient along 
the cylinder axis and the gravity force. 

In present paper this theory is demonstrated in the case of circular Couette :How. 

2. Motion equation system of rotating particle- fluid two- phase flow 

In the simplest case of suspension with rotating particle, when the mass densities of particle 
· and fluid are equal and constant, the motion equations will have following form [1-3]: 

In (2.1) 

'i7 · u = o; 7J = <pU1 + (1- 'PJU2 ; 

d<p --
Pdj =- 'i7 · J; J = p<p(U, - U); 

nJ r- 1 (- ) 1 - = -p<p(1- <p) F- -- 'V~t, ; Dt 1- <p p,T 

dU - - -
Pdj = pg- 'Vp- 'V X i'1 + 'V · i'2; 

dW -- ----i& + i(J · 'V)w = -<, + v x .l., + v · .l.2; 

d a --
dt ( .. · l = a/ .. l + (U · 'V)( .. · ); 

D d -­n/ .. )= dt( ... )+[( ... )·'VJU. 

U 1 and U 2 - mean velocity of particles and fluid, 

U - mean velocity of suspension, 

<p - volume concentration of particles, 

J · diffusion flux of particles, 

W- mean rotation velocity of particles, 

J - particle moment of inertia, 

J..L1 - generalized chemical potential of particle, 

F - generalized diffusion force, 

p - thermodynamical pressure, 

j = :!" R3 p<p; 
3 

?1 - vector equivalent to antisynunetric part of visco~ stress tensor, 

?2 - symmetrical part of viscous stress tensor, 

xl -vector, equivalent to antisymmetric part of moment stress tensor, 

:\2 - its symmetrical part. 

The specialized nonlinear constitutive equations can be written in the form [1-3] 
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- - 1 - ( 1- -) -F=a1 J+ 2a2'i7xw-f31 w- 2'i7xU xJ, 

- - 1 -
>., = a 2J + 2"'" 'i7 x w, 

( 
1- -) r 1 =a4 w- 2'i7xU ,- (2.2) 

1'2 = ~as [V U + ('i7 U{], 

- (- )- 1 [(- ) (- )T 2- -] >.2 = a6 'i7 · w I+ 2"'7 'i7 w + 'i7 w - 3 'i7 · w I , 

where a 1, . , . , a7, f3I - constitutive coefficients. 

The equation system (2.1) together with constitutive equations (2.2} can be solved if there 
are determined the boundary conditions for the mean velocity IJ, rotation velocity W and volume 
concentration <p. In this paper. we suppose that on the ilow rigid boundary we have following 
conditions: 

D'=O; 

In (2.3) the parameter t is characterizing the influence 
of the ilow boundary on the particle rotation. When t = 0 
particle can not be rotated at boundary and when t = 1 
particle is rotated with velocity equal the external rotation 
of ilow. 

3. Steady numerical solution 

As a simplest demonstration of the theory, now we are 
considering the steady circular Couette ilow IFig.1]. 

In this case the equation system (2.1) - (2.2) can be 

shown to have the form: Fig. 1 

1 d [ dUo] d { [ 1 d ] } ;: dr a,r dr + dr a2 Wx- 2r dr (rUo) = O, 

(2.3) 

! ..'£ [asr dwx] + a2 [wx - ..!:_ _c!_(rUo J] = 0 (3.1) 
r dr dr 2r dr ' 

where we put: 

1 
a1 = 2a:s; 

- a4 d<p- as [w.- ..!:__c!_(rUoJ] dwx = 0 
dr 2r dr dr ' 

(3.2) 

The velocity U, the rotation velocity w and the volume concentration <p will be found from 
the following conditions: 

Uo(R.) = rloR;, Uo(Ro) = O, 
w.(R;) = tn.(R;), w.(Ro) = trl.(Ro), 

R, 

R~ : m I <prdr = <po, 
'R; 
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where: 

flo - rotation velocity of the inner cylinder, 

ipo - average volume concentration, 

fl, = .!_ dd ( rU9 ) - external rotation velocity. 
~ 2r r 

The system of equations (3.1} - (3.3} is solved numerically with different values of parameters 
t, soo and flo; and with following parameters a1, ... , as: 

a1 = 0.005; a2 = 0.0005; a, = 0.001; a4 = 0.00015; as = 0.005. 

Results of the calculation in the case, where 00 = 1.5; \?o = 0.5 and t is taken equal to 0; 
0.5 and 1, are presented in Fig. 2. It is can be seen that boundary condition for particle rotation 
velocity plays important role in the process of particle migration. Only by the experinlents one 
can show that is the real value for parameter t. 
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In Fig. 3 the velocity, particle rotation velocity and external flow rotation profiles for the case 
where flo = 1.5, \?o = 0.5 and tis taken equal 0; 0.5 and 1 are plotted. 
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It has been shown that the developed generalized diJfusion theory of rotating particle - fluid 
twoM phase flow can be used to predict the particle migration in suspensions. In the case of circular 
Couette flow, it can be seen that the rotation velocity of particle, and especially its boundary 
condition play most important role in the particle migration. Obviously the obtained results are 
exceptionally qualitative, because many phenomenological parameters have to be found. 
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LY THUYET KHUYECH TAN SUY RONG CUA SlJ DICH CHUYEN 

THDY DQNG wc cAc H4-T TRONG HON HqP LONG-RAN 

Ly thuygt tSng quat cac dong ch!y 2 pha chilt long mang cac h~t c6 thg bie'n d~ng d'tfqc c6 
:hu y t&i bie'n d~g vi m,8 va chuygn d(>ng tm:mg d.5i giira cac pha dii du:qc xay dvng trong [1-3]. 

Ba.i ba.o nay d~ c~p de'n vi~c s1l- dvng m8 hlnh dan gian nhat cU. a ly thuygt dii illrqc phat tri~n 
,ren d~ m8 ph6ng qua trlnh djch chuy~n ella cac h~t trong h6n hqp 16ng-r£n, m(>t trong nhirng 
'~n d'e quan trgng va phtrc t~p nhift cua dong ch!..y nhih pha. D~ d~t du:qc mvc dfch do, da xet 
~huy~n d<)ng cda ch&:t Umg Newton mang cac h~t c'au cli-ng c6 thg quay dtrgc v&i ccl.c ph11crng trlnh 
cac dinh phi tuygn it¥: bi~t. H~ phmrng trlnh thu nh~ dll'<;'C dii dll'qc .u- dvng d~ nghi<ln Ctru 
tjnh tfnh sv djch chuy~n cac h~t trong dong ch!y Couette giira 2 hinh trv. 
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