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In [1], a quasi-linear oscillating system with time-dependent quadratic non-linearity subjected 
to external excitation has been considered. It has been shown that there exists a certain interaction 
between parametric and forced oscillations due to the quadratic nonlinearity and the external ex
-eitation respectively. The fundamental resonance in the case of dephase 1r between tWo excitations 
has been analyzed and two forms of the resonance curve have been obtained. 

In the present paper the general case with arbitrary dephase between two excitations will be 
examined. Critical singular points [2] will be used to classify different forms of the resonance curve. 

1. System under consideration. Ordinary and critical stationary oscillations 

Let us consider a quasi-linear oscillating system described by the differential equation: 

x+ w2 :r: = e{- h:i: + ll.:r:- "(3,0 + 2p:r:2 coswt + ecos(wt +a)}, (1.1) 

where : xis an oscillatory variable; overdots denote the differentiation with respect to timet; e > 0 
is a small parameter; h, ~ 0 is the damping. coefficient; 1 is the cubjc nonMlinearity coefficient; e > 0, 
2p > 0 and w are intensities and common frequency of the external and parametric excitations, 
respectively; a (0 :<;; a < 21r) is the dephase between two excitations; eb. = w2 - 1 is the detuning 
parameter (1 - own frequency). J 

Introducing slowly varying variables (a, 0)- amplitude and phase of the oscillations- by mean 
of the formulae: 

:r: =a cost/>, :i; = -wasint/>, t/> = wt + 0 (1.2) 

and using the asymptotic method, we obtain, in the first approximation, the following averaged 
differential equations: 

a=-.!._ f = --=-{hwa + ( !pa2 + e cos a) sin 0- esina.cos o}, (1.3) 
2w 2w 2 

ae = -2:g= -2: {- (3
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-t:..)a+esinasin0+ (~pa2 +ecosa) coso}. 

Stationary oscillations of constant amplitude and phase will be determined from the equations: 

f = 0, g = 0. 

By Do, D, D2 we denote the determinants: 
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from (1.4), sin 0 and cos 0 can be calculated and the ordinary part C 1 of the resonance curve C is 
obtained 

( 2) Df + D~ W1 6., a = D2 - 1 = 0. 
0 . 

(I. 7) 

The critical region is characterized by the equality: 

3 
Do= 4/(a2

)
2 + 2p(ecoscr)a2 + e2 = 0. (1.8). 

Evidently, (1.8) has positive solutions a2 if: 

-va -l<coscr<--· - - 2 (1.9) 

Th if 
5" 7" h . . I . d . us: - 0::; cr < 6 or 6 < u < 211", t e cnt1ca reg10n oes not eXIStl 

if 
5" 7" h · · I · · d . f . h . II II" - 6 ::; u :::;_ 6, t e cnhca region exiSts an consiSts o two stra1g t para e 1nes: 

a2 
= :; (- coscr ± .jcos2 cr- D (1.10) 

511" 711" 
(a double straight line if cr = 6 or cr = 6) 

To determine the critical part C2 (of the resonance curve C) we have to solve the equations: 

Do = 0, D1 = O, D2 = 0 (1.11) 

under the restrictions: 

(1.12) 

As it has been shown in [2], by rejecting those points (6., a2 ) satisfying (1.11) but not (1.12), 
the "whole" resonance curve C(C1 + C2 ) can be found from the relationship: 

W(Li,a2
) = Di +D~- D~ = 0. (1.13) 

By D we denote the discriminant: 

(1.14) 
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- if D > 0, I is a nodal point 

- if D < 0, I is an isolated point 

2. System with dephase " 

This case has been analyzed in 11]. In this case, the system (1.11} (1.12) and the relationship 
(1.13} are simple: 

1 3 
Do= (2pa2 - e)(

2
pa2 - e)= 0, 

3 
D1 = -hwa(2pa2

- e) = 0, 

( 31 2 )(1 2 ) D2 = a 4a - /:;. 2pa - e = 0, 

(~pa2- e)2 2': h2w2a2, 

(~pa2-e)22': (3:a2-t:;.)2a2, 

If h = 0 (system without damping), from (2.1} we obtain: 

- a compatible point I. of coordinates (l:..;, an: 
2 2e 

ai =-, 
3p 

- a compatible line J parallel to the abscissa axis !:;.: 

2 2e 
a=-. 

p 

It is not difficult to verify that: 

- I satisfies (2.2) i.e. I corresponds to critical stationary oscillations, it's a part of 0 2 • 

- Along J, (2.2} is satisfied only, if: 

(2.1} 

(2.2} 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

i.e. along J, only segment J 1J2 determined by (2.5) (2.6) is representing segment - the second 
part of C2. 

If h > 0 (system with damping), the compatibility conditions (2.1} admit only I as compatible 
point at which the trigonometrical conditions (2.2) lead to the inequality: 

h2 < h2 = 4ep2 
- c 3(1e+2p) (2.7) 

Thus : - if h :5 he, I is a representing critical point; 
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-if h >he, I is an isolated point (and must be rejected). 

The resonance curve of the system with damping consists of two branches: the upper 0' and 
the lower C" lying respectively above and under the line J. The upper branch C' is of "parabolic" 
form, the lower one 0 11 has a loop with the nodal point I. As h increases, C' moves up, whereas 
on moves down, the loop becomes narrower-then disappears. 

In Fig.l, for fixed values u = 1r, i = 0.1; e = 0.06; p = 0.2 the resonance curve-1, 2, 3 
corresponds to h = 0; 0.005; 0.1. 
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Fig.1 

. 5ff 7ff 3. The system with dephase 6 ::::; cr i' ff ::::; 6 

0.1 

In this case, there are two compatible points I, J. Indeed, from the first equation Do = 0 of 
the system (1.11), we have obtained the ordinates: 

a~ · = 
4

e ( - cos cr ± v cos2 cr - ~) 
·~ ~ 4 

(3.1) 

The second equation D1 = 0 can be written as: ....... 

D, = (esin<7)w2 + (~paf,- + e cos cr)hw- ( 
3

4
7 af,- + l)e sin cr = 0. (3.2) 

The positive roots are: 

(3.3) 
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If h = 0, we have: 
3"( 2 

w· ·=-a··+ 1 or t,J 4 t,J 

i.e. I and J lie in the skeleton.curve 
37 a2 =A. 

3"( 2 
-a··=A· · 4 ,, '·' 

(3.4) 

Evidently, the trigonometrical conditions (1.12) are satisfied. Thus, for the system without 

· · 5" < -t. < 7" h d . t .. al . I J I . . h damping, if 6 _ a r '1f' _ 6' t e resonance curve a m1ts wo cnttc pomts , ymg In t e 

skeleton curve (a double critical point if <T = 
5
: or <T = 

7
: ); these two points are of nodal type. 

Increasing h, I, J move along two critical lines ( 1.10) respectively. 

Differentiating (3.3) with respect to h, we obtain: 

( ipa~; + e cos <r) { (%pa~; + e cos <r) h - ( ipa~; + e cos<r) 
2 + 4( ~a~;+ 1) e

2 
sin

2 
"} 

2e sino- (~paf,. + e cos <1) 2 
h2 + 4( 37 a~+ 1) e2 sin2

;,. 

(3.5) 

Since 

(3.6) 

we have 
dw,; if . d 
dh <0 sm<r>O an 

dw,; 0 if . 
dh > sm<r<O. (3.7) 

Thus, when h increases I and J move to the right (left) if sin" > 0 ( < 0). As h exceeds certain 
values It;,;, I, J change into isolated points. 

In Fig. 2, for fixed values " = 
1
1
1
;; 'Y = 0.1; e = 0.06; p = 0.2, the resonance curves 1, 2, 3 

correspond to h = 0; 0.005; 0.1 

~ 
0 0.1 Ll 

Fig. e 
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1311" 
In Fig. 3, for fixed values a = 12; 'Y = 0.1; e = 0.06; p = 0.2, the resonance curves 1, 2, 3 

correspond to h = O, 0.005; 0.1 

a' 

0.1 Ll 

Fig.9 

We see that, increasing h the resonance curves move to the left in the case a = 
1

1

1

2
7r and to 

the right in the case a = 
1
:;. As h exceeds certain value, the upper critical representing point J 

disappears. The resonance curve is divided into two branches - the upper 0' of "parabolic" form 
and the lower 0 11 with a loop. Increasing further h, the upper branch 0 1 moves up, the lower 0 11 

moves down, its loop becomes narrower then disappears. 

• 51!" 711" 
4. System with dephase 0 :5 a< 6 , 6 <a< 211" 

In this case, the critiCal region and consequently, critical singular points do not exist. H 
h = 0, the resonance curve consists of two branches - the left branch C' and the right C", located 

respectively in the left and in the right hand sides of the skeleton curve 
37 

a2 = !!.. . 4 
Increasing h, C' and C" approach each other. The two branches C' and C" may connect 

together at an ordinary singular point which disappears immediately and the resonance curve is 
divided into two branches - the upper and lower ones. 

In Fig.4, for fixed values a= i; 'Y = 0.1; e = 0.06; p = 0.2, the resonance curve 1, 2, 3 

correspond to h = 0.04; 0.05; 0.06 respectively 
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5. Stability conditions 
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To study the stability character of the stationary oscillations, we use the variational equations: 

. e aj e 8! 
Sa= ----Sa- --SO 

2w a a 2w ao , 
· e 8g e 8g 

aSO =---Sa- --50 
2w aa 2w ao , 

(5.1) 

where Sa, SO are small perturbations of a, fJ respectively. 

The characteristic equation is of the form: 

e e2 

ap
2 + -81p + - 2 82 = 0 

2w 4w 
(5,2) 

and conditions for asymptotic stability are: 

af ag 
8' = a a a + aa > o, 

8! 8g 8f 8g 
82 = a;; aa - aa aa > o. 

(5.3) 

The first stability condition is satisfied only for the system with damping: 

81 = 2hwa > 0 i.e. h > 0. (5.4) 
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For the ordinary part C1, the second stability condition can be transformed into the compact 
form: 

a aw 
-·->0 
Do 8a2 (5.5) 

and can easily be used to determine ordinary stable portions bounded-by vertica.1 tangents. 

The stability character of each critical representing nodal point can directly be deduced from 
that of the ordinary portion considered as containing it. In the figures presented heavy (broken) 
lines correspond to stable (unstable) oscillations. 

Conclusion 

The interaction between parametric and forced oscillations in the fundamental resonance in 
a quasi-linear oscillating system with time-dependent quadratic non-linearity is examined critical 
singular points axe used to classify different forms of the resonance curve depending on the dephase 
between two excitations, the resonance curve admits either one or two critical singular points. 
These points disappear if the damping is strong enough and the resonance curve is divided into 
two branches - the upper and the lower. 

This publication is completed with financial support from the National Basic Research Pro
gramme in Natural Scien,ces 
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TUONG TAC GifT A KfCH DONG CUONG BUC VA THONG SO 
TRONG MQT Ht.DAO DQNG A TUYEN 

Xet tll'O'llg tac gifra hai klch il(ing ctriing brrc va th8ng s<l trong m(it h~ dao il(ing a tuye'n co 
phi tuye'n b~c hai ph~ thu(ic thai gian. Di~m ky dj t6i h~n t.rO'llg rrng dao il(ing dlrng t&i h;m 
il.rqc dung d.~ phan lo¥ d'J.ng cac iltritng c(ing htr&ng. Ph~ thu(ic vao il(i l~ch pha gifra hai kich 
il\ing, il.rang c(ing htr&ng co m{lt ho~c hai ili~m ky di t6i h~n, cac ili~m nay bUn mgt khi cAn ild 
m~nh va il.ritng c(ing h1l&ng tach th1mh hai nhanh- nhanh tren va nhanh dlr6i. 

8 


