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1. Introduction 

An analytical technique proposed by Berman [1] allows an exact representation of a branch 
component within the model of the main structure by considering the impedance matrix of the 
component and its inverse. 

This paper has its genesis in an early study [3] in which reduced impedance of a statically 
determinate branch component was found by using component mqdes. It is intended to apply the 
method to the case of hyperstatic interface. 

2. Definition 

Consider a structural system composed of the main component "M" and a branch component 
"k?' as illustrated in Fig.l. 

"k" 

f 

Fig.1 

It is convenient to rearrange and partition the elements of the two impedance matrices in the 
following way: 

z;,] zk , ee 
where f refers to interface coordinates and i. to non-interface coordinates. 

The impedance of the system, then, may be forined by superimposing these matrices in the 
form: 

z7,]. 
z;, 

If a valid model of component "k" could be formed using only the interface coordinates, the 
impedance of the system could be written as 

Z, = [Zee z,, "k l z,, z,, + z,, , 
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where ZJ 1 is called reduced impedance of component "k". 

3. Reduced Impedance 

Consider a branch component the interface of which is assumed hyperstatic. Its ·displacement 
may be expressed by the vector 

q(t) = [ :~ J = U:J (3.1) 

in which qr are rigid-body displacement on the connection interface and qc the remainder of dis­
placements on the connection interface·. 

The equation of motion of the component is 

Mij+Kq=F, (3.2) 

where the mass, stiffness and force matrices are 

F=[~]· 
The displacement of any point is found by superimposing the motion excited by the main 

component through the interface and the elastic motion relative to the latter, so that 

(3.3) 

</Jr is rigid-mode matrix which can be considered as having resulted from arbitrary displacement 
of. each of the statically determinate constraints qr. It can be partitioned as 

</Jr = [L]' 
<Per 

and it must satisfy the basic condition 

K<f!r =0, (3.4) 

~c is the constraint-mode matrix, which is produced by giving each redundant constraint qc an 
arbitrary displacement while keeping all other constraints fixed: 

<f!c = [ ~ ] ' 
<f!tc 

</Jp is the natural mode matrix, which is formed by fixed-constraint natural modes of vibration of 
the component: 
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where x~i) are eigenvectors of the equation 

[Ku - AMu]xe = 0, 

and the corresponding eigenvalues will be designated by 

Replacing q by (3.3) in (3.2) then multiplying by [¢, .Pc ,Pp]T the equation (3.2) becomes 

where 

mrr = ¢/;: M ifJr, 
mcc = ¢;; M¢c, 

mpp = ¢~M¢., 

L,. = ¢~ M¢., 

Lp, = ¢~ M¢., 

Lpc = ¢~M¢,. 

The equation (3.5) can be written in the form: 

For a harmonic excitation 

a steady-state solution is assumed of the form: 

q = -q eiwt 
' ' ' - jwt qc =gee 1 

Yp = YPe:iwt 

Substitution of (3.10) into (3.8) yields: 

or, alternatively 

From this and taking into account kii = rrliiw'f we have: 
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k,c = ¢~ K¢,, 

k•• = ¢~K¢., 

(3.5) 

(3.6) 
(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 



Introducing the notations: 

(3.12) 

and substituting (3.10) into (3.7), taking into account {3.11) we obtain 

n 2 k n 2 
- 2( "' w M ]- 2( cc "' w ]-F c = -w Lcr + L- 2 2 cr,i qr - W mcc - 2 + L- 2 2 Mcc,i qc. w.-w w w.-w 

i=l ' i=l ' 

(3.13) 

Similarly, substitution of (3.10) into (3.6), taking into account (3.11) and (3.13) yields: 

- 2 [ T -!!'- wZ ( T )]-
F r = -W mrr - <PcrLcr + L- 2 2 Mrr,i - t/JcrMcr,i qr w. -w 

- i=l 1 

(3.14) 

2 [LT T ~T kcc -!!'- w
2 

(M T )]-
- W cr- tPcrmcc + 'f'cr -2 + L....J 2 2 cr,i- tPcrMcc,i qc. w w. -w 

i=l 1 

The equations (3.13) and (3.14) can be rewritten in the form: 

(3.15) 

According to the definition of reduced impedance, it follows from {3.15) that 

the elements of which are defined in (3.13) and (3.14). 

4, Example 

Consider a simple rod as a branch component which is assumed to interface a main component 
at both ita ends and to be submitted to a longitudinal motion u(x) (Fig. 2). 

Fig.2 

The equation of motion of the rod is: 

ESu"- p.u = o. 

45 



From which we have the modal frequencies 

W; = i1r (ES' 
L VJ; 

and the corresponding mode shapes and the generalized masses: 

cp;(x) = Csin ~ x, 

L 

m;; =I JJ.cp~dx = ~02JJ.L. 
0 

The rigid-body mode is given as 
,P,(x) = 1, 

from which we obtain the rigid-body mass 

L 

m, = I JJ..P,,P,dx = JJ.L. 
0 

The constraint mode takes the form: 

from which it follows that 

and 

X 
oPc(x} = L , 

L 

mcc =I WPcoPcdx = ~}J-L, 
0 

L 

kcc =I ES,P~,P~dx = E: , 
0 

L 

Lc, = I 1'-'Pc.P,dx = ~ }J-L, 
0 

rfocr = 1, 

L 

I 1-cosi1r 
L;, = JJ.cp,.p,dx = CJJ.L . , 

'" 0 . 

L 

I cosi1r 
L;c = JI.'PioPcdX =-CpL-.- , 

'" 0 

M . = 2 £(1- cosi1r)2 
rr,1 J1. . , 

'" 1 
Mcc,i = 2JJL"722 1 ' .. 

1- cosi1r 
Mrc,i = Mcr,i = 2p.L .2 2 

' " 
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Finally, we obtain the elements of reduced impedance 

1 = 2 

Zrr=-!l>Lw 2 [-+2L 2 w 2 2 w. -w 
i=l ' 

5. Conclusions 

A method has been developed for determining the reduced impedance of a branch component 
attached hyperstatically to the main component by using modal synthesis techniques. As an 
illustration of the method a simple longitudinal model was analyzed as a branch component. 

This publication is completed with the financial support from the National Basic Research 
Program in Natural Sciences. 
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TRO KHANG THU GQN NHANH c6 TIEP Nor srtu TiNH 

M(lt ph11<mg phap xac djnh trc'r khing thu ggn cda nhanh c6 tie"p n8i sieu tinh v6i cilu true 
chinh da duyc trinh bay. Ph11<mg phap dva tren ky thu~t tBng hqp cac dl).ng thanh phll.n. M(lt 
mo hlnh nhanh don gilm d11<'ri dl).ng thanh da dU"'?"< khao sat nhU" m(ltvl d'l. 
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