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ON THE INTERACTION BETWEEN FORCED
AND PARAMETRIC OSCILLATIONS IN
A SYSTEM WITH TWO DEGREES OF FREEDOM

TrRAN KM CHI - NGUYEN VAN DiInNa
Institute of Mechanics, Hanoi Vietnam

In [1], the interaction between forced and parametric oscillations in a quasi-linear oscillating
system with two degrees of freedom has been studied: both mentioned oscillations occur in the
mode (y); the forced one results from an external excitation in the fundamental resonance, directly
acting on (y); the parametric oscillation {by means of nonlinearities) is indirectly excited by the
forced non-resonant oscillation' of the mode (z). It has been shown that if the indirectly excited
parametric oscillation is very intense, the resonance curve consists of three branches - the left and
right of “hyperbolic® form and the middle of “parabolic” form.

In the present paper, the so called “harmonic and parametric case” [1, pp. 335-341| will be
examined. Critical singular points [2] will be used to classify different forms of the resonance curve.
The case in which the indirectly - excited parametric oscillation is not very intense will be analyzed
in detail. As it will be shown, the resonance curve has either a loop or an oval.

1. System under consideration

IJ,Let us consider a the quasilinear oscillating system with two degrees of freedom described by
the' differential equations [1]:
F 4+ Xz + eA?(hot + 2® + cy®s) = Qsin v,

. 11
i+ y+ (kg + By® + b2?y) = epcos(vt + §). (2.1)

For simplicity, ho, 8 and b are assumed to be positive.

The oscillations are found in the forms:

z = gsinvt + a; cos(At + ¥1); £ = wvgcosvt — Aaysin(At + 1),
@ (12)

y=acos(vt+ ), §=~vesin(vt+), 1= 37 =

and the averaged differential equations in the first approximation are:

. A
a1 = —?hﬂa'l)

. ey eV b, . . .
a = —Z—fo—— ?{yha-i—‘iq asm2¢+psm(1ﬁ—6)}, (1.3)

= o= 2 (3424 L2 b2
ay = 5 0 =7 {(Zﬂa. +§q +A)a—zq acosZa,bwpcos(qb—é)},
where eA = (1 — 1?),
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Evidently , the intensity of the indirect parametric excitation is characterized by the coefficient

b,
47

Stationary oscillations are determined from the equations:

a1=0," fo=0, go=0,

among them, the last two ones can be replaced by their equivalents:

o 3 b b '
= fosiny —ggcos v = vhasiny — [(Zﬂa2+ §';?24_&) _ Zqz]acos1/)+p0056=0,

b b :
g= focosy + gosiny = [(gﬁa2 +=-¢ +A)+ Z,qz]asim,b + vhacosty — psind = 0.

2

(L5)

The resonance C (frequency-amplitude characteristic is defined as the ensemble of representing
points (12, a) whose ordinate a is the amplitude of stationary oscillations corresponding to the
frequency v. In general, C consists of two parts: the ordinary part C) and the critical one Cs.

2. System without damping in the mode y

We shall first examine the system without damping in the mode (y)

the system of equations (1.5) becomes simple:

[(zﬁaz + 'l’?'q2 +A) ~ %qz]acos % =pcosé,

2

[(;ﬁflz + qu + A) + %qZ] asiny = psind.

2

In the ordinary region where:

Do = (a2 +

b
2

b

S¢ +4) - =] [(%ﬁaﬂ +ipsa)+

4 2

%q"’] #0,

. In this case h = 0 and

(23

(2.2

from (2.1), siny and cos 4 can be calculated without difficulty and the ordinary part C is easily

obtained:
Wi(v2,a?) = — bp22c032 § _— r— bpz sin? § =10, (2.3)
[(Zﬂa +50 +8) - 1q ] a [(Zﬁaﬂ +28+ A) + Zqz] 42
The critical region is characterized by the equality:
Dy = Gﬁag + ng + A)z - (Zqz)2 =0, (2.4)
It presents two curve in the plane (v2,a?): o
| %ﬁéﬁ =2 -1)- %ff - qu, ) (-Z.Sa)
i‘.ﬁaz = (2 -1} - %qﬂ + qu. (2.5b)
Along (2.5a), the system (2.1) becomes:
—%qgacosy’):pcos 6, Oegsiny =psin5. (2-6)
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If § = 0, m, the system (2.6) has as solutions:

% = arc cosb 313 ) (2.7)

a? > :;;2 (2.8)
Anglogously, along (2.5b), if § = %, 3—275, undef the same .restrictio.n (2.8} we obtai_n.

1 = drarc sin—— (2.9)

bq?

Thus, for the system without damping in the mode (y] the critical part Cj:
3n

- does not exist if § £ 0, 7 my, — 5 (the resonance curve consists only of the ordinary part Cy);

- is the semi curve given by (2.5a) bounded below by (2.8) if § =0, =;
3

- is the semi curve (2.5b) (2.8) if § = %, —g -

The forms of the resonance curve in the case A = 0, shown in Figs 1, 2, correspond to § =0

(C2 exiéts), §= E {C'2 does not exists) respectively. The case h =0, 6 = 0 has been presented in
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. System with damping - Ordinary and critical st#tionary osciilations

In this case b > 0, the critical part C; is reduced into an unique point I and various forms of

the resonance curve can be obtained.

By Dy, Dy, D; and Do, Dy, D; we denote the following determinants

“.50——-62.00,
— § 2 22 _E2
Dy = buh b [(4ﬁa +59 + 4A) 4q]’
[( Ba®+ = 92+A) e ] vh
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b
s <[Coe b 0) - o]
sin & vh

Dy =apD), D= , (3.1)

_ , bv ; —cosd
D2=ale:2-,. Pz = [(Zﬁaz+"q2+A)+Zq2] sin §

2
‘In-the ordinary region, where: " -
3 b b b b
- [(Zﬁaz +30° +4)+ 7] [( Ba + ¢ + &) - 2¢°| + V2K 20, (3.2

from (1.5), we can calculate sin 9, cos¥ and the ordinary part C is given by:

: p?(D?+ D3 2) '
W]_ (Vz,a) W I1=0. .(3.3)
The critical region is characterized by the equality:
B F y2
Dyg=0 or %ﬁaz = (¥ —1)— -Z-qr2 + (Zqz) —h%2 (3.4)

It presents the resonance curve Cy of the “pure” indirectly - excited parametric oscillations (p =0,

the mode y is not directly excited by the external excitation ep cos{vt + §)).

The critical part C (of the resonance curve C) is determined from the equations
Do = 0, D1 = 0, Dz =0 (35)

under the restrictions:

az{uzhg + [(%ﬁaz + %qz + A) - 292]2} > p?cos? 5,

3 ) - (3.6)
2 {17h? + [(Z,ﬁ'az +2¢%+A) + ZQZ] + vzhz} > psin? 6.
q .
From (3.5) we may obtain an unique compatible point I, of coordinates (v2, a.):
—-15
v, = —;}—qz sin 24,
R 4 b (3.7)
'Z,Ba.f ={?-1)- qu - Zqz cos28 >0
at which, the restrictions (3.6) lead to an unique inequality:
2
@za= L. (3.8)

b24*

Thus: - if (3.8) is satisfied, L. corresponds to critical stationary oscillations,

- if (3.8) is not satisfied, I, does not correspond to any stationary oscillation, I, does not
belong to the resonance curve.

By rejecting those (compatible}. pomts sa.tlsfymg (3.5) but not (3.6), the whole resonance
curve C (C; + C3) can be found from the relationship:

W(v?,e%) = p*(D? + D3) — a®D2 =0. (3.9)
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By D, we denote the discriminant:

W 2 2w FIw 38ha® ;. ,
= - . = b%gta? — 4p? 3.
D (Buzaa) (ngauz) (aaaa) 2v, ( 7e ?’) . (8.10)
P '
-ifD>0ie. a2 > a2 62 4,.l’,,isa,m:)dalp-:aint,

-if D < Oie. a2 <ac,I is an isolated point.

.~ The case D = 0 i.e. a2 = a? corresponds either to a returning point or a degenerated nodal
point (with double tangent).

4, Different forms of the resonance curve

Depending on the intensity of the indirectly - excited parametric oscillation (i.e. on the rate

b . —
between h and —¢° ) and on that of the direct external excitation as well as on the dephase 4,

different forms of the resonance curve can be obtained.

If the indirectly - excited parametric oscillation does not exists (large 2, small Zqz), the critical
region C'o hes under the axis v2." The resonance curve is similar to that of the pure forced one

b
except - it may exist - a “crevasse” at the top. In Fig.3 for h=0. 0915 p = 0.11759, Zq =0.1;

respectively.

3
Zﬁ = 0.1, the resonance curves (1}, (2) gorrespond to § = g, _—f,

~tg0
Fig. 8
We shall investigate in detail the case in which the indirectly-excited parametric oscillation is
intense enough so that the top of Cp lies above the axis v2.

For small p, the resonance curve consists of two branches-the upper C' and the lower C"-lying
above and under Co respectively. If a? > a2, I, is a representmg point, C’ and C” are joined at
I, the resonance curve has a loop (Figs 4(a, b)); if a2 < o2, C" and C" are separated by Cy, the
resonance curve has an oval (Figs 5(a, b, ¢}).
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Tncreasing p, the upper branch moves up while the lower one becomes narrower. In the case
of the loop, as p reaches the value —bga®, the loop disappears, the nodal peint I, changes into a
returning point (Fig.4c). At certain value p, the oval disappears, too (Fig.5d).

Increasing p, further the resonance curve is similar to that of the case without indirectly
- excited parametric oscillation (Figs 4d, 5d).

In Figs 4(a, b, ¢, d) for § = f; h = 0.09, Zqz = 0.1; Zﬁ = 0.1, the resonance curves
correspond to p = 0,03; 0.05; 0.11759; 0.15 respectively.

a

0.50

000 —— T T T T T

0.00 T T ¥ T

0.00——1—T—

T 7 T

000—+— 7 ;

2
In Figs 5(a, b, ¢, d) for § = ?ﬂ.; h = 0.0877;
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>

f = 0.1 the resonance curves

correspond to p = 0.004, 0.005; 0.006; 0.007.

If the indirectly - excited parametric oscillation is very intense, the top of Cy goes up to
“infinity” (out of the acceptable region), Co is represented by two nearly parallel curves. For small
P, the resonance-curve C consists of three branches - the left and right of “hyperbolic® form and
the middle of “parabolic” form. Increasing p, the middle brancher moves up then disappears, the
resonance carve has two branches - the left and the right. The resonance curve in this case is of
form shown in Fig.6 and given in [1].
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Varying &, the compatible point I. moves along Cy. In the case of the loop, as a? becomes
less than a2, the loop either disappears or changes into an oval. On the contrary, in the cases of -

the oval as a2 exceeds a?, the critical point I, appears.

b 3
In Figs 7(a, b) for h = 0.09; Zqz = 0.1; Zﬁ = 0.1, p = 0.03 the loops b, ¢, d, e, f, 9, h

3
correspond to § = Tﬂ- 2 2.35619; 2.82; 2.2519; 2.24; 2.4;2.41936; 2.44 respectively.
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Fig. 7

. To illustrate the transformation of an oval into a loop, in Figs 8(a, b, ¢, d) for A = 0.0877;
b 3
1 ? =01 Zﬁ = 0.1; p= 0.005, the rezonance curves have been drawn for § = 2—3{ /s 2.09439; 2.15;

2.25; 3% w 2.35619 respectively.
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a.00

Fig. 8

5. Stability conditions

Since hg > 0, ther a; — 0, therefore we have only to study the stability character of the mode
y. For this purpose, we use the variational equations

g afo ev dfy v dgo ev 8o

()" = 52000+ T 3000, a9 = TG0+ TR0, )

where (§a) (8§¢) are small perturbations of @, ¥ respectively.

The characteristic equation is of the form:

22

¥ g, —o0, ' 5.
s (52)

ap® + 2 51P+

and sufficient conditions for asymptotic stability are:

3fy & 3fs 890 0fs D
S, =a ﬁ+£ >0, Sg—a—hﬁ—3f¢9£>o. (5.3)

The first stability condition is satisfied for the system with damping

S =2avh >0 Le. A>D0. (5.4)

Regarding to (1.5), the second sté.bility condition can be written as:

_973g 9f9g
27 3408y 3y da > 0. (5.5)

For ordinary part Cj, (5.5) can be replaced by:

1 oW
— —>0. .
Do da (5 6)
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This compact form can easily be used to determine ordinary stable portions of the resonance
curve bounded by vertical tangents.

The stability of the critical nodal representing point I, can directly be deduced from that of
the ordinary portion considered as containing I,.

In the figures presented above heavy (broken) lines correspond to stable (unstable) shationary
oscillations. o = : . oo

Conclusion

The interaction between forced and parametric oscillation in a system with two degrees of
freedom has been examined. Critical singular points are used to classify different forms of the
resonance curve. If the indirectly - excited parametric oscillation is not very intense, the resonance
curve consists of two branches either joined at the critical representing point or separated by the
critical region; correspondingly, the resonance curve has either a loop or an oval.

This publication is completed with financial support from the National Basic Research Pro-
gramme in Natuaral Sciences
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TUONG TAC cUGNG BUC - THONG SO TRONG MOT HE HAI BAC TU DO

Xét twong téc gitra dao ddng thdng s8 vi cwdng bitc trong mot hé hai bic tw do. Diém ky
di t&i han dwoc ding d& phén loai dang dwong cdng hudng. Khi dao ddng théng s& do kich ddng
gidn ti€p giy ra dd manh (khéng qué manh}), dwdng céng hwéng gdm hai nhinh holic néi véi nhau
tai diém k¥ di té1 han hojc tich bift nhau bdi misn téi han; twong tng dwdng cdng hedng cé
mdt vdng thit hodc cé nhanh biu duc.
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