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DIFFSTOCHASTIC EQUIVALENT LINEARIZATION 
BASED ON THE FOKKER-PLANK EQUATION 

APPROACH 

1. Introduction 

NGUYEN DONG ANH - NGUYEN Due TINH 

Institute of Mechanics, Hanoi Vietnam 

Stochastic equivalent linearization is the most popular approach to the approximate analysis 
of non-linear syste~s under random excitations. Over many years the original version of Gaussian 
equivalent linearization (GEL) has been developed by many authors, see e.g. [Atalik & Utku, 1976], 
[Casciati & Faraveilli, 1986], [Roberts & Spanos, 1990], [Zhang et a!., 1991], [Anh & Schiehlen, 
1995]. In order to improve the accuracy of GEL different techniques have been proposed, see e.g. 
[6, 7, 8]. 

In the paper a technique for determining the coefficients of the linearized equivalent equation 
based on the Fokker-Piank equation approach is presented. The investigation is then applied to 
Duffing and Vanderpol oscillations under a zero mean Gaussian white noise. 

2. Equivalent linearization criterion 

Consider a single-degree-of-freedom mechanical system, whose motion is described by the 
equation: 

(2.1) 

wherein the symbols have their customary meanings, f is a non-linear function of x and X, w, h, 
u are positive constants, and e is a positive parameter. The random excitation e(t) is a Gaussian 
white noise process of unit intensity 

E(e(t), e(t + r)) = 5(r), (2.2) 

where E(.) denotes the ei.:pectation operation, and 5(r) is Dirac-Delta function. 

Following the linearization method, we introduce new linear terms in the expression of the 
equation (2.1) 

(2.3) 

The linearized equation takes the form 

(2.4) 

There are some criteria for determining the coefficients p., A, see e.g. [6, 7, 8j. In the paper 
an alternative approach to GEL is proposed as follows. 
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According to the classical approach of the averaging method the state coordinates (x, :i;) are 
transformed to the pair of amplitude and phase (a, cp) by the change 

x(t) = a cos cp, :i:(t) = -awsincp. (2.5) 

The Ito differenti~l equations for a and <p are obtained from. (2.3) [Mitropolskii et all., 1992] 

2 

+ ~(!- >.x- J'X) sin <p +--;- cos2 cp}dt- ~sin cpde(t), 
w 2w a w 

{ 
1 . 

dcp = w + - [((2h + •l')x + eA:x) cos <p 
aw 

2 

+ e(f- >.x- J'X) cos cp] - --;.-.,. sin2 <p} dt- .!!__cos cpde(t). 
2w a wa 

(2.6) 

The Fokker - Plank equation (FP equation) for the stationary probability density function 
W(a, cp) corresponding to the system (2.6) takes the form: 

(2.7) 

where [K;, K;;]L denotes the following linear differential operator 

(2.8) 

and 

K, = 4::a- (h+ •;)a+ [4::a + (h+ •;)a] cos2cp+ ;>sin2cp, 

e.>. e.>. ( •I' a
2 

) • K2 = - + - cos 2cp - h + - + -- sm 2cp, 
2w 2w 2 2w2 a2 (2.9) 

~ ~ . ~ 
K11= Zw2 (1-cos2cp); K12= 

2
w2 asin2cp; K22= 

2
w2 a2 (1+cos2cp). 

Let W1 (a, .>.,!') be a solution of the FP equation corresponding to the linearized systems 
(2.4). If An[WL(a, .>., p)] = 0, then WL(a, .>., !') is also a solution of the FP equation (2.7) which 
corresponds to the non-linear systems (2.3). However, it is seen from (2.7) that in general 
An[WL(a, A, JL)] differs from zero. So, we minimise the e:ITor in mean square as follows 

271" 211' II { An[WL(a, .>., p)] r dadcp-> T.\!'. (2.10) 

0 0 

The FP equation corresponding to the linearized equation (2.4) gives the solution 

(2.11) 
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where c is a normalization constant. 

Substituting {2.11) into {2.10) one gets 

21f 211' 

H(A,}') =I I { :t [~u- AX -}'i:) sin lOw,] 
0 0 

+ aa [...!:...(!-AX- J'X) cos \Owl] }2 
dadiO-+ min. 

p aw - >..,,.,. 
{2.12) 

The condition {2.12) gives a criterion for determining the linearization coefficients >. and I'· 

3. Application 

In order to elucidate this approach we consider two oscillators with non-linear stiffness and 
damping, under white noise excitation. 

3.1. Duffing oscillator 

Consider the following equation 

X+ 2hi: + w2 X+ qx3 = ue(t), 

where 1 = const. In this case one gets 

f(x, i:) = 1x3
, 

and the linearized equation is 

ii + 2hi: + {w2 + e>.)x = u€(t). 

So, ones gets probability density function (2.11) in the form 

{ 
(w2 + e>.)2h } 

WL(a,A)=caexp - 0"2 a2 • 

Substituting (3.2), (3.4) into {2.12) and using {2.5), after some calculations one gets: 

where 
2h{w2 + e>.) a= . 

u2 

The expressions J;. (i = 0, 2, 4, ... ) are shown in the Appendix 1. 

Substituting Ja, Js, J1o and {3.6) into {3.5) one gets, finally 

- 2{ 4725"(2 1 105 1 
H {a) - .. y/'2; c 1"62 3 r::: - J:O 2 r::: 

2 w a ya: 2 e a yo: 

( 
105 u

2 
15w

2
) 1 15 (""

2
)2 1 15 (""

2
)2 } 

+ 211w2e h + 28e2 a,fo- 28e h ,fa+ 210w2e2 h ,fa . 
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{3.1) 

{3.2) 

{3.3) 

{3.4) 

(3.5) 

{3.6) 

{3.7) 



In order to determine the smallest value of the function H(a) in the interval a E (0, +oo) we 
consider the following equation 

dH(a) = 1r,fifc2{ _ 3307572 _1_ + 525 _1 __ (~ <>2 
da 217w2 a4 fo 211e a3 fo 212w2e h (3·

8l 
45w

2
) 1 15 (~)2 1 · 15 (<>

2
)2 1 } 

+ 29e2 a2fo + 29e2 . h afo + 21lw2e2 h fo = o. 

From the equation (3.8} one obtains the solution a = <>min > 0 at which the function (3.7} 
has the smallest value Hmin = H(a:min)· The value a:min depending one w, 1, 0'2 , h, e can be 
determined numerically. 

The mean square of displacement corresponding to amin takes the form 

(3.9} 

The result obtained by the expression (3.9} (x2)T is compared in the Tab.1 with the exact 
solution for values w = 1, 1 = 1, u2 = 4h, and different values of e. In addition, the result obtained 
by the classical GEL (x2)g is also shown. Obviously, the solution (x2)T is much closer to the exact 
solution (x2 ), than the solution (x2 )g 

Table 1. Approximate mean squares of displacement for Dulling equation 

N • (x2), (x2}g 
---

1 0.1 0.8176 0.8054 (1.49%} 
2 1.0 0.4679 0.4343 (7.19%} 
3 10.0 0.1889 0.1667 (11.8%} 
4 100.0 0.0650 0.0561 (13.6%} 

3.2. Van der Pol oscillator 

As a second example we consider a Vanderpol oscillator 

In this case one gets 
f(x, x) = (7x2 - 1}x, 1 = const, 

and the linearized equation takes the form 

!i +<!'X+ w2 x = <>E(t}. 

So, one gets the following probability density function 

(x2)T 

0.8289 (1.38%) 
0.4492 (3.99%) 
0.1745 (7.57%) 
0.0588 (9.54%} 

(3.10} 

(3.11} 

(3.12} 

(3.13} 

Substituting (3.11}, (3.13} into (2.12} and noting (2.5}, after some calculations one obtains 

In': 2 [ 29<>4 r;; 29~ 1 
H(/3) = 7rV 27r c 2'e2w4 V f3 + 27 ew2 ,jf3 (3.14} 

( 
29 249"fr>2) 1 249"f 1 937512 1 l 

+ 2' + 2'0ew2 f3,fl3 + To · f32,fl3 + ~ · f32,fl3 ' 
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where 

(3.15) 

Differentiating the function (3.14) with respect to f3 one gets the following equation 

(3.16) 

The equation (3.16) gives the solution f3 = f3m;n > 0 at which the function (3.14) has the 
smallest value Hm;n = H(f3m;n) in the interval f3 E (0, +oo). The result obtained from the ex­
pression similar to the one {3.9) (x2 )r is compared in the Tab. 2 with the simulation solutions 
(x2)Ma taken in [Roy and Spanos, 1991] where w = 1, '"( = 10, e = 0.2 and for different values 
of i'. In addition, the resnlts obtained by the classical GEL and the classical SAM (Stochastic 
averaging method) (x2)sAM [Roy & Spanos, 1991] are also shown. It is seen from the Table 2 that 
the solution (x2 )r is much closer to the simulation (x2)Ma than the solution (:t")" 

Tab. 2. Approximate mean squares of displacement Van der Pol equation 

N (12 (x2)MG (x2)u (:t2) SAM (x2)r 

1 0.02 0.2080 0.137 {34%) 0.2055 {1.2%) 0.1859 (10.62%) 
2 0.2 0.3600 0.279 {22%) 0.3402 (5.5%) 0.3445 {4.49%) 
3 1.0 0.7325 0.552 (25%) 0.6433_(12.1%) 0.6903 (9.17%) 
4 2.0 1.0310 0.759 (26%) 0.8750 (15.1%) 0.9152 (11.23%) 
5 4.0 1.4540 1.051 (28%) 1.2040 (17.2%) 1.2916 {11.17%) 

4. Conclusions 

The problem for discovering new techniques to overcome the limitation of the classical GEL for 
both weak and strong non~ linearity is of great interest. In the paper a technique to treat stationary 
response of non~ linear systems under a zero mean Gaussian white noise is presented based on the 
Fokker - Plank equation approach. The proposed technique is then applied to Duffing and Van 
der Pol oscillators to show significant improvements over the accuracy of classical GEL. 

Acknowledgement. Support from the fundamental research Project. in natural sciences is 
gratefully acknowledged. 

Appendix 

1. Let 

one gets 

and 

= 
J2n =I a2

n e-2
aa

2 
da; (a> 0, n = 0, 1, 2, ... ), 

0 

Jo = V21r, 
4a 

2n+1 
J2n+2=--J2n (n=0,1,2, ... ). 

4a 
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2. Property 

Let the function y = f(x) be defined, continuously in the interval x E (0, +oo) and satisfy the 
following conditions 

lim f(x) = +oo; lim f(x) = +oo . 
.::~::-0 ::r:-+oo 

It is known that the function f(x) has the smallest value in the interval (O,+oo). In particular, 
the functions H(a) in (19) and H(,B) in (26) have the property mentioned above, so both of them 
have the smallest values in the interval (0, +oo). 
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TUYEN TINH HOA NGAU NHIEN TU"O'NG :E)U"O'NG 
DVA TREN PHU"O'NG TRINH FOKKER-PLANK 

:E)~ kh£c ph~c nhirng h~n eM cda phtrcmg phap tuye'n tlnh h6a t>rong drrong Gauss kinh di~n 
trong trll"Cmg ht;YP phi tuye'n m~nh, cac tic gilt d3. d~ ngh~ mc?t tieu chu~ tuygn tinh h6a t1rang 
drrcrng khac d;ra tren vi~c khao sat phrrong trinh Fokker-Piank d5i v6i ham m~t d9 xac suilt dlrng 
cda bien d9 va pha. Ke't qua ap d~ng cho cac h~ Dulling va Van der Pol cho ke't qua t5t hon d5i 
v&i ph1rang phip tuye'n tfnh h6a kinh di~n. 
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