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1. Introduction

Stochastic equivalent linearization is the most popular approach to the approximate analysis
of non-linear systems under random excitations. Over many years the original version of Gaussian
equivalent linearization (GEL) has been developed by many authors, see e.g. [Atalik & Utku, 1976],
[Casciati & Faraveilli, 1986], [Roberts & Spanos, 1990], [Zhang et al., 1991], [Anh & Schiehlen,
1995]. In order to improve the accuracy of GEL different techniques have been proposed, see e.g.
6, 7, 8]. .

In the paper a technique for determining the coeflicients of the linearized equivalent equation
based on the Fokker-Plank equation approach is presented. The investigation is then applied to
Duffing and Vanderpol oscillations under a zero mean (Gaussian white noise.

2. Equivalent linearization criterion

Consider a single-degree-of-freedom mechanical system, whose motion is described by the

equation:
£+ 2hd +wlz + ef (2, 2) = o£(t), : (2.1)

wherein the symbols have their customary meanings, f is a non-linear function of z and %, w, h,
o are positive constants, and ¢ is a positive parameter. The random excitation £(t) is a Gaussian
white noise process of unit intensity )

B(E(), &5+ 7)) = 8(0), | (22)

where F{.} denotes the e!xpecta.tion operation, and §(r) is Dirac-Delta function.

Following the linearization method, we introduce new linear terms in the expression of the
equation (2.1)

£+ (2h+ eu)d + (w2 + eX)z + e(f{z, 2) — u — Az) = o £(2). (2.3)
The linearized equation takes the form
&+ (2h+ ep) + (0 + eX)z = o £(2). (2.4)

There are some criteria for determining the coefficients y, A, see e.g. [6, 7, 8. In the paper
an alternative approach to GEL is proposed as follows.
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According to the classical approach of the averaging method the state coordinates (z, &) are
transformed to the pair of amplitude and phase (2, ) by the change

z(t) = acosp, z(t) = —awsinp. (2.5)

_The Ito differential equations for a and ¢ are obtained from (2.3) [Mitropolskii et all., 1992] o

da = {‘-}[(Zh + ep)i + eAz] sinp
o2
2w2a
1
dip = {w + E;[((Zh +eu}E + elz) cosp

+E(f—z\z—p.i)sintp+ cos? p}dt—gsintpdﬁ(t),
w

(2.6)

. ot o
+e(f — Az — pi) cos p] — 2053 sin® <p} dt — — cos ed&(t).

The Fokker - Plank equation {FP equation) for the stationary probability density function
W {a, ) corresponding to the system (2.8) takes the form:

A W] = w%—i—f -+ Ky Kig |L(W) + e{:—a [:—:(f — Az — p) sin goW]
+ ;(;[-:;(f—/\x—ui)cosqu]} =0, (2.7)

where | K;, K;;|L denotes the following linear differential operator

K, Koy L] = %(KIW) + a—i(fQW)

1[82(}’{ W)+ 2-2 (KuW) + e (K w)] 2.8)
2 13q2 V1t Jadyp 12 dp? 22W) (2
and
K, = o —(h—{-fﬁ)a+[ o +(h+-sﬁ)a]c 2 +ﬂ. in 2
17T 4w2g 2 402g 2 OSEP T 5 tER e
>3 WS | gL o2 .
K; = % -+ 50 5O8 2¢ -~ (h-l- o -+ —2w2a2) sin 2¢, 7 (2.9)
o? o .o
K= ﬁ(l —coa2p); Kiz= 705a sinZp; Koz = m(l + cos2p).

Let Wi{a, A, u} be a solution of the FP equation corresponding to the linearized systems
(2.4). If A [Wi(a, A, p)] = 0, then Wr(a, A, ) is also 2 solution of the FP equation (2.7} which
corresponds to the non-linear systems (2.3). However, it is seen from (2.7) that in general
An\Wi(a, A, p)] differs from zero. So, we minimise the error in mean square as follows

27 27 . 3 o )
f[{An[WL(a,A,p)]} dadp — l}lin. (2.10)
M
0 0
The FP equation corresponding to the linearized equation {2.4) gives the solution
w? +eA)(2h +eu) ,
Wila, A, p) = caexp { - ( 3g #) ag}, (2.11)
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where ¢ is a normalization constant.
Substituting (2.11) into (2.10) one gets

2r 2

H(xp) = // g— ~(f — Ax—pm)smle]
T
t %

[__.(f Az — Hi} cos goWl] }2dadtp — I)l\lin . (2.12)

1

The condition {2.12) gives a criterion for determining the linearization coefficients A and u.

3. Application

In order to elucidate this approach we consider two oscillators with non-linear stiffness and
damping, under white noize excitation.

3.1. Duffing oscillator

Consider the following equation
| #+ 2kt + iz + sfyar:s-l: oé(t), ‘ (3.1)
where v = const. In this case one gets
flz,3) = 1, | (3.2)
ar{d the linearized equation is
34 2hi + (0® + eX)z = of(2). (3.3)

So, ones gets probability density function (2.11) in the form

_ (w? +er)2h ,
Wi(a,A) = caexp{ e } (3.4)
Substituting (3.2}, (3.4) into (2.12) and using (2.5), after some calcula.t.lons one gets
‘ 592 a? 7)\0: A2
H{a) = @cz( 67 S0t T Ja Je,) (3.5)
where , o
2h(w? + €A) '
Q= ——0_2_— . {3.6}
The expressions J; {(t = 0,2,4,...) are shown in the Appendix 1.
Substituting Jg, Js, Jio and {3.6) into (3.5) one gets, finally
472542 1 105 1
= 2
H(a) = nVr { Sl — 75" 1 e (3.7)

105 o? 15w)1.150'221 15 o2y 2
+ (3rig2e 7 * B ava 77 Va 210425 (%) vat



In order to determine the smallest value of the function H{a} in the interval a € {0, +co) we
consider the following equation

dH{a) of 3307547 1 L5 1 315 o?
da m/me { 2172 a4\/— 21le oS /o (212w25 h (3.8)
45w2‘) 1 15 (0'2)2 1 715 (0'_2 2 1 }'_0 '
t e aa/a - 202 af 211262 h) Vel

From the equation (3.8) one obtains the solution @ = ampiz > 0 at which the function (3.7)
has the smallest value Hy;u = H(2min). The value on;, depending one w, <y, o2, h, ¢ can be
determined numerically.

The mean square of displacement corresponding o oy, takes the form

2r o

1
(%) =ffszL(a, Qmin)dadp = 5

Cmin

(3.9)

The result obtained by the expression (3.9) (z?)r is compared in the Tab.1 with the exact
solution for values w = 1, v = 1, &2 = 4h, and different values of . In addition, the result obtained
by the classical GEL {22}, is also shown. Obviously, the solution (z? )T is much closer to the exact
solution {z2), than the solution {z?),

Table 1. Approximate mean squares of displacement for Duffing equation

N e (22)e (a2 (z)r

1 0.1 0.8176 .  0.8054 (1.49%) 0.8289 (1.38%)
2 1.0 0.4679 0.4343 (7.19%) 0.4492 (3.99%)
3 10.0 0.1889 0.1667 (11.8%) 0.1745 (7.57%)
4 100.0 0.0650 0.0561 {13.6%) 0.0588 (9.54%)

8.2. Van der Pol oscillator

As a second example we consider a Vanderpol oscillator

i +wlz + e(vs? — 1)z = o£(t). (3.10)
In this case one gets : ‘

f(z, %) = (y2® —1)%, - = const, (3.11)

and the linearized equation takes the form '
&+ eud + wlz = o£(t). (3.12)

So, one gets the following probability density function
2

Wi(a,p) =ca exp { - wag'“az}. (3.13)

Substituting {3.11), (3.13) into (2.12} and noting (2.5), after some calculations one obtains

290* 2907 1
H(B) = mv2r ? ['2"8—;“4‘\/5'5' MTE (3.14)
24902 ) 1 249'7 1 9375+° 1
(23 2102 ﬂ\/— 910 ﬁzﬁ+ 916 'ﬁz\/a]’




where 2
wéep

B=—5 (3.15)
Differentiating the function (3.14) with respect to § one gets the following equation
2904 2902 1 87  T4T~o? 1
dH(B) _ /= z[_i_.i_;'_._u G+ 207y L
ds 22t /B 2%zw? BB 2% w2/ g2/
1245+ 1 8562572 1 ]

- . —_ : . = (. 3.16
AR BE (8:16)

The equation (3.16) gives the solution § = fiyiz > 0 at which the function (3.14) has the
smallest value Hpin = H(fmin) in the interval 8 € (0,+00). The result obtained from the ex-
pression similar to the one (3.9) (z®)r is compared in the Tab.2 with the simulation solutions
(%) amc taken in [Roy and Spanos, 1991 where w = 1, v = 10, ¢ = 0.2 and for different values
‘of g2. In addition, the results obtained by the classical GEL and the classical SAM (Stochastic
averaging method) (z2) ¢4 [Roy & Spanos, 1991] are also shown. It is seen from the Table 2 that
the solution {z?)7 is much closer to the simulation {z%) o than the solution {z?),

Teb. 2. Approximate mean squares of displacement Van der Pol equation

2 (Pwe (22, (PHsare . {eBr

0.02 ~ 0.2080 0.137 (34%) 0.2055 (1.2%) 0.1859 (10.62%)
0.2 0.3600  0.279 (22%)  0.3402 (5.5%) 0.3445 (4.49%)
1.0 0.7325  0.552 (25%) 0.6433 (12.1%) 0.6903 (9.17%)
2.0 1.0310  0.759 {(26%) 0.8750 {15.1%)  0.9152 {11.23%)
40  1.4540  1.051 (28%) 1.2040 (17.2%)  1.2916 (11.17%)

m»hc.otor—*lZ

4. Conclusions

The problem for discovering new techniques to overcome the limitation of the classical GEL for
both weak and strong non-linearity is of great interest. In the paper a technique to treat stationary
response of non-linear systems under a zero mean Gaussian white noise is presented based on the
Fokker - Plank equation approach. The proposed technique is then applied to Duffing and Van
der Pol oscillators to show significant improvements over the accuracy of classical GEL,
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gratefully acknowledged.

Appendix
1. Let
Jop = [ng e"?aanda; . (x>0, n=0,1,2,...}), (A.1)
0
one gets .
' V2
Jo= o (A.2)
and il |
n
Jzn.;.g = to Jzﬂ, (n_=0,1,2,...]. (AS]
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2. Property

Let the function y = f(z) be defined, continuously in the interval z € {0, 4+-oc) and satisfy the

following conditions
lim, f(z) = too; _lm_f(z) = +oo

" It is known that the function f(z) has the smallest value in the interval (0,+co)." In particular,
the functions H(a) in (19) and H () in (26) have the property mentioned above, so both of them
have the smallest values in the interval {0, +oc).
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TUYEN TINH HOA NGAU NHIEN TUONG DPUONG
DUA TREN PHUONG TRINH FOKKER-PLANK

D€ khic phuc nhitng han ch& cda phwong phédp tuyén tinh héa twong dwong Gauss kinh dién
trong truwdng hop phi tuyén manh, cic tic gid 33 4% nghi mdt tidu chuin tuyén tinh héa twong
dwong khic dwa trén viéc khdo sat phwong trinh Fokker-Plank 481 v&i ham mét d§ xdc suidt dirng
cda bién d6 vi pha. K&t qui dp dung cho cic hé Duffing vid Van der Pol cho két qui t8& hon d8i
v&i phwong phip tuyén tinh héa kinh d&ién.
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