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1. Introduction

In this paper, the theory of the elastoplastic process is applied to derive the
governing equations of stability problems of thin rectangular plates subjected to
complex loading processes. The solution presented in the paper belongs to the two
following cases of boundary condition

1) The considered plate has all four edges clamped stiffly.

2} The considered plate has two opposite edges clamped stiffly while the two
others are simply supported.

The plates with four edges simply supported has been considered in [4]

2. Governing equations of the problem

Let’s consider a rectangular plate with the thickness h and the lengths of the
edges e, b. The coordinate system Ozyz is chosen such that the middle surface
of the plate coincides with the plane Ozy and the four edges can be described by
z=0,z=a,y=0,y=0.

The external forces acting on the plate are biaxial compression forces of in-
tensity p, ¢ and shear force 7. The upper forces are assumed to be increasingly
and depend arbitrarily on a some parameter ¢ (the loading parameter)

p=p(t), g=qft), r=r(t)

so that the loading is really performed in a arbitrary process. It is important to
determine the critical values t = t*, p* = p(t*), ¢* = ¢(t*), r* = 7(¢t*) at which an
instability appears.
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An analysis of the stability problem is always made in two stages: f.he—buckling
stage and the post-buckling stage.
1. Pre-buckling stage

At any moment t-.--fhe—re--exists a 151ane stress state in the plate
011 =P, 032 = —¢, O12 = —T, 013 =023 =033 =0  (2.1)

so that

_Ooutow _ pt+g
e - ’
3 3 (2.2)
Ou = \/Ufl — 011022 + 03, +30%, = V/p? — pg + ¢* + 312

The components of deformation velocity are determined according to the the-
ory of elastoplastic process [1]. In case of process with average curvature, they are
of the forms : . :

P _l(_.+1.) (1 )Pp+qq+3ff—§pq—-2qp( _:1)

1 A p 2q P A P ""Pq+q2+31'2 P 2q _
é _}_(_.+£.) (i_l)?ﬁ+qd+3r'f—%—pqm%qﬁ( _£)

22 A q 2P P A p2_pq+q2+3T2 2P (2‘3)
¢ _3_"'._E(i_i)f’ﬁ+qé+3f*-%?'*%qﬁf

Y4 2\P 4 p? —gp + ¢* + 372

where
t
g
A=—,P=9(s) 5= 7—f 2+ +éuin+éh) o (24)
3} J |

®(s) - a known function concerned with the material used, s - the arc-length
of the strain trajectory. '

Suppose the loaded process of the plate starts at the natural state. Att =0

p=q=r=0, e1=¢€p=6;=0 s=0 (2.5)

With equations (2.1) + (2. 5) we can find the corresponding deformatlon pro-
cess of the plate in the pre-buckling stage. - :
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In the inverse problem, the desired strain process is assumed to be given

e1r = €1(t), €20 = €22(t), €12 = €12(t) (2.6)

then the external forces acting on the plate must perform in the process that can
be determined from the fellowing equations '

PE11 + gE22 + 27€2

dp = —:;-A(E'11+ 5—22) + (A — P)

dt 2 ; pr—pg+p?+3r2"

dg 4.7, €11 pe1y + g2z + 2762

Do A+t B +(a- 2.7
dr 2, PE11 + ez + 27€12

d 3A512+(A P) 22— pg+ pE 12 T

2. Post-buckling stage

Let t increase until it reaches the value ¢t* at which a bifurcation of equilibrium
states appears. It means: with an infinitesimal small increment of the external
forces there are possible increments of deformation (including the bending defor-
mation) in the plate. According to the assumption of straight normal

beij = bei; — 2+ 6xis (2.8)
where ‘
1/0u; OJuy % w
6 ?- —_— - L J i. p—y 2-
&ij 2 (a:cj ozx; ) s Oxis Oz;0z; ( 9)

e}, - increments of deformation components of the middle surface,

du;, Sw - increments of in-plane displacement and deflection of the middle
surface.

dxi; - increments of curvature and torsion associated with instability.

The corresponding stress increment can be determined according to the theory
of the elastoplastic process

2 opede
50’,’1' = EA(&E.‘;‘J' + 6,'3' . 6€kk) + (P — A] ——%-2—&-8- $ Oy

u
bs = 2

75(55?1 + 6e2, + be116€93 + &f,)”z (2.10)
(?‘.1.?.1 k,E - 1, 2)
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The increments of membrane forces and bending moments are determined

with using (2.10)

h/2

2 . . 2
5Nij = / 60i3'dzf.= EAI (&Eij + 61;3-65,;}“) —— EAZ'(éxij + 613‘6ka)+ B

+ Oy [(P1 — Ay)e— (P — Az)x],
h/2
2 \ oy 2
5M,;j = 50’53‘2612 = §A2 (56,;)- + 6‘ij'6€kk) - '§A3 (5}(,;_7' + 5@,'6ka)+
-h/2 ’
+ Ez‘j[(Pz — Ag)e — (P3 — As)x]
where
h/2 h/2
Ay = / Az dz, P, = / P.z"" Uz, (m=1,2,3)
~h/2 —h/2
_ Uiy Cij ¢ «  _ " Ui _
oij = a—: , €= 0__:65ij =0ibeg;, X = a_:5Xi3' = 0,56 Xij
2 - N
Eliminating the value 5(6553- -+ 6,'1'58);];) from the expressions of § N,
gives us
As 27 A2
6M,;j = ;1—1-5ij -+ g (A_I - Ag) (6)(,;]' + 5.,;]'5)(]‘;1;)-5-
AZ P? 3/Py  Axn—
Fol{ A — 22 4 22 _ ) ,_(.___,__,S..g ]

(2.11)

(2.12)

(2.13)

(2.14)

6M;;

(2.15)

The increments of displacements, internal forces and moments satisfy the

following equations

6N, =0
Oz; N
%6 M;;
Oz;0zx; + Nijbxij =0
326611 n 326522 I 32651'2
drl 3zt " 0z,0z,

and the concrete boundary condition.
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In general, when an instability occurs, there may exist two regions of active
and passive deformations in the structure. The expression for the increment of
deformation work is

- - W =0“35€ ,_, Y - e - (217)

U . 0 )
=0y (ﬁ&s}}- - zo—zéxij) = oy(e ~ 2x).

In the region of active deformation éW > 0, so that the stress-strain rela-
tionship is taken by {2.10). In the region of passive deformation W < 0, so that
the Hookian relationship is applied. Dividing boundary zg of the two regions is

determined by
€—2zx =0 (2.18)

Using equations (2.11) we can get the following equation to find out 2,

tn|

O N5
X

3
P]_Zo - Pg = 5 (2.19)

Accepting Ilyushin’s approximate statement which says 6 N;; = 0 we obtain

o | (2.20)
2 0 2 3% ? ? /
o= Sl G+ (GG + a1

Now we can calculate

h/2 zo h/2
A, = [ A-zm 1z = / 3G -2 dz + / A-zm Yz =
~h/2 —h/2 C oz
= {seler - (-3)+4[(3)" - %1} |
h/2 Zo h/2
P, = / P.oz™ = / 3Gzm"dz + [ Pz" " ldz =
. —h/2 —h/2 oz
hym hym
- Lfsole (-3 +2[(2)"- 1)
50
Aa—%f-:%i\lu, szPg—’ig—ng—fi'Ilp
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where

2 212
1 s 3 (1-wa) (1-25) ]
‘I’A—E[1+‘PA+(1 ©a)Zg 11tpa+(l—pa)z
_ 1 3. - =3
‘I’P—5[1+<PP+§(1—90P)20——(1—9013)30
{PA’_:SG'J ‘PP—“3G

Equation (2.19) determining the bound of the active and passive deformation
regions reduces to

2
z3(3G - P) +220(3G + P) + (3G - P) =0, Zo= -2
V3G - P
and solution to which is Zg = ~ e P .

"The expressions of moments now have the forms

Gh® 2 00
M = — [ - E\I’A (§Xij + 6i;'5ka) + (‘I’A - \I’p), ;2}:2 5X]c£] (2.22)

The stability equation (2.16) in this case becomes
HMéw n Otéw N 346w + 946w . 6w
MggE T dz3dy s drigy? “4 zay? o dyt
n 3 ( 926w +9 96w + 32510) 0
’r =
GO hz \P 552 azoy T ay?

+

(2.23)

where

a1=l—§(1——&)£, azz_g(lﬂ_&)g

4 \I’A 0‘3 \IJA O’?L

¥py7? 3 Yp\ pg

e )5 -30- 28

o3 ‘I’A Jﬁ 2 \IIA 0'3
‘I’p qr 3 ‘I’p q2
=—3(1——) :1——(1——-)--
Oy ‘I’A 0_5 3 124 4 ‘I}A o_i

Now we return to the two cases of boundary condition.

If four edges of the plate are clamped stiffly then the boundary conditions are

déw
bw =0, —5———20 atz=0, z=¢

x

36w (2.24)
bw =0, =w~=—=0 aty=0,y=25

dy e

35




The expression of §w chosen for this case is the following series

N N 2mrz 2nmy
bw = ;f;l_pmn (1 - cos a ) (1 T cos b ) “ (225)

which satisfies the boundary conditions (2.24}.

If two opposite edges of the plate (e.g., edges belong to y = 0 and y = b)
are clamped stiffily while the two others are simply supported then the boundary
conditions are

%5
bw=0, a;‘”:o atz=0, £ =aq,
Y (2.26)
bw=0, — =0 at y=0, y==ab
dy :
~ The corresponding expression of éw can be chosen as
NN mnz 2nmy
fw = D, .. sin (1 — €OS ) 2.27)
22 P ; .

“which satisfies the boundary conditions (2.26).

Series (2.25) and series (2.27) contains Ng = N? terms, each of them corre-
sponds with only one couple (m,n). By numbering the terms of series (2.25) and

- series (2.27) from 1 to Ny, we can rewrite these series as follows

Ny

§w=") Brlw (2.28)
k=1

where B; = Dy;, B2 = Dy1,..., By = Dyy,
Bn+1= D12, Byys = Das,...,Bn, = Dnn.

The index k in dwy is determined in the same way

2 : 2 2
t5wlm(1—c:t:vs——7r—$)'(1-—cos-H or&wlzsinm-(l—cosﬂ)
a b a b
' 4 2 2
Swy = (1--cos ﬂ) . (1 — ¢os —WE) or fwy = singqff . (1 — o8 ﬂ)
‘ a b a b

---------

2Ty . Nrnz 21y
) or wy = sin . (1—-cos —--—)

a b a b
. 2nx 4 : 1 4
bwyyy = (1 — cos ——~) . (1 — cos ﬂ) or dwpy 41 = sin 2Tz, (1 — cos —Wg)
a b a b
2N 2N 2
dwy, = (1 — cos ;rx) (1 — oS ;ry) or wy, = sin Nz (1 — cos A;Wy) .
a a :



To determine the critical forces, in here the Bubnov-Galerkin method is used.
According to this method, we put series (2.28) into the stability equation (2.23)
and use the notation Q(§w) for the left side of the received equation. Afterward,
multiplying Q(8w) by éw; ( = 1,2,...,Np) and integrating all over the volume

“of the plate gives us C :

a b
]/ﬂ bw)bw;dzdy =0 (:=1,2,...,No}) (2.29)
J | .

From the structure of §w, if let ¢ be sequently assigned with values 1,2,..., Ng
then from equation (2.29) we can get a system of Ny linear-algebraic equations of
‘the unknowns By (k = 1,2,.:.,Np). This system has the form

(Cir) - {Bx} =0 (2.30)

where

{By}T = (By,Bs,...,Bx,)
(Cik.) - matrix of Ny columns and Ny rows, C;r = /féwi (8w )dzdy

N(6wy) - the left side of the equation which is received from putting éwy in
equation (2.23) instead of putting éw.

Notice that the coefficients in stability equation (2 23) depend on p, q, T s0
Cir in system (2.30) depend on p, ¢, 7 as well.

Because B # 0 so according to the condition of existence of non-trivial
solition we can get the relation

det(C,-k) =0 : (2.31)

In the process of solving differential equations (2.3) (or differential equations
{2.7) according to concrete expressions of p(t), ¢(t), 7(t) (or of &11(t), £22(¢),
£12(t)), relation (2.31) is used to determine the critical values t*, p*, ¢*, 7

3. The way of solving and concrete results

In case of the direct problem we have known the expressions p(t), q(t), 7(t),
®(s). In the inverse problem the known expressions are e1;(t), €22(¢), €12(t), ®(s).

37



Let ¢ increase from t = 0 with a some step At. Solving differential equa-
tions (2.3) or {2.7) by Runge-Kutta we will receive the corresponding process of
_deformation or loading, respectively. The calculation process is continued until

condition '(2.31) is satisfied. ‘The values of ¥, 7, ¢, 7 received—atthe end-of the . _
calculation process are respectively accepted as the critical values t*, p*, %, 7°.

In the following part, the author would give out some concrete results received ;
from solving the direct problem and the inverse problem on stability of rectangular ¥
plates in the two upper cases of boundary condition. The material of the considered ]
plates is the steel marked 30XT'CA which has G = 0.8667-10° kG/cm? and function
®(s) presented in [1, 4]. The programming to solve the problem is implemented
in Turbo Pascal language.

: B
1. The first set of results (Direct problem - First case of boeundary condition) i :
|
|
|

afh =32, b/h =35

p(t) = 2400, g{t) = 12002 + 2000¢, 7 = 800{e’ — 1)

t* = 0.974; p* = 2337.6, ¢* = 3086.4, r* = 1310.8, 0, = 3604.6 (kG/cm?)
2. The second set of results (Direct problem - First case of boundary condition)

a/h =38, b/h =32 'r

o |

t* = 1.552; p* = 2638, ¢* = 3453, r* =2242, o} = 4986 (kG/cm?) i

. The third set of results (Direct problem - Second case of boundary condition)

3 B
a/h =38, b/h =35 |
1500 if t <0.25 '
t) = 1700¢, q(t) = | , T = 1800/
p(t) a(t) { 1500(t +0.75) if¢> 025" Vi
t* = 1.334; p* = 2267, ¢* = 3126, r* = 2079, o} = 4560 (kG/cm?)
4. The fourth set of results (Direct problem - Second case of boundary condition)
a/h =35, b/h =40
0 if t < 0.25
t) = 1200t%+200¢t, ¢(t) = T = 800(¢' —1
p(t) a(t) {2ooom ift >0.25" (')
t* = 0.764; p* = 2228.4, ¢* = 1434, r* =917, o}, = 2520 (kG/cm?) L
5. The fifth set of results (Inverse problem - First case of boundary condition)

a/h =32, b/h =35
17 = —0.0215v/%, €33 = —0.0255(¢! — 1), €1, = —0.065¢
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t* = 0.0628; p* = 4746.1, ¢* = 3312.3 7* = 1547, o, = 4995 (kG/cm?)
6. The sizth set of results (Inverse problem - First case of boundary coﬁdition)
a/h =385, bfh=2T
—0.015 ift <025
s { —0.0115(¢ +0.75)  if ¢ >0.25
t* = 0.0622; p* = 2411. 3 q" = 48226, 1'* 1519 3, o) = 49355
(kG /cm?)
7. The seventh set of results (Inverse problem - Second case of boundary condition)
a/h =35, b/h =21
—0.015 if t <0.25
f = { ~0.0115(t +0.75) if ¢ > 025’
=0.0164; p* = 2387, ¢* = 4774, 7* =781, o}, = 4348 (kG/cm?)

€29.= —0.0255t2, €15 = —0.065¢"

€99 = —0.0255t2, €12.= —0.065¢

8. The eighth set of results (Inverse problem - Second case of boundary condition)
a/h = 25, b/h = 40
11 = —0.0135¢, €95 = —0.0345(e’ — 1), €13 = —0. 0165\/'
=0.081; p* = 2421, ¢* = 3283.6, 7*2258.6, o’ = 4898.1 (kG/cm?)

4. Conclusion

The problem on the elastoplastic stability of thin rectangular plates under
complex loading has been solved in the following aspects

- Deriving the governing equations,

- Making the algorithm and programs to solve,

- Giving out some concrete results belonging to both the direct problem and
inverse problem in two cases of boundary condition.

If assigning different expressions to p(t), g¢(t), 7(t) or €11(t), £22(t), €12(t)
and running the corresponding programs then we can investigate the influence
of complexity of loading process or deformation process on stability of the plate.
Moreover, if changing the value of the ratios a/h and b/h then we can also consider
the influence of the geometrical relations on stability of the structure.
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this paper
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GIAI BAI TOAN ON DINH DAN DEO CUA TAM MONG HINH CHU NHAT
TRONG HAI TRUONG HOP KHAC NHAU CUA DIEU KIEN BIEN

Trong céng trinh cida minh, tdc gii 4p dung lj thuy&t qué trinh dan déo 48
thiét ldp cdc phwong trinh gidi cia bai toén én dinh dan déo cda tdm mdng hinh
chir nhit chiu tai trong phic tap. Bai todn dwoc gial trong nhidu truwdng hop khéc
nhau cia didu kién bién, mdi trudng hop dé lai dirge gidi theo hai chidu thuin v
nguwoe. Gid tri téi han cia cic tai trong ngoai dwoc xédc dinh theo phwong phép
Bubnov-Galerkin.
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