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ON PERIODIC WAVES
OF THE NONLINEAR SYSTEMS

LE XUAN CAN
Vietnam National University, Hanoi

ABSTRACT. The paper is concerned with the solvability and approximate solution of
the nonlinear partial differential equation describing the periodic wave propagation.

Necessary and sufficient conditions for the existence of the periodic wave solutions
are obtained.

An approximate method for solving the equation is presented.

As an illustrative example, the equation of periodic waves of the electric cables is
considered, ‘

1. Consider the nonlinear wave equation of the form

y 8% dy Oy |
o g2l ( —= = .
o2 “ dx2 Ty +efys at’ 8:1:)’ (1.1)

where ¢ is a small parameter, ¢ and b are two positive constants; The function

f(y, dy 0

3 gg) is assumed to be continuous and Lipschitzian with respect to ifs all
z
arguments.
When £ = 0 the equation (1.1) can be expressed in the form (degenerate
equation)

32:90 2 32110
2 =g? T 4 p? 1.2
ot? @ dz? Yo, ( )

with the initial conditions of the problem given in the type

Yo(z,0) = Acosw(z + ),

1.3)

where A2 = a%w? — b%; A, p are arbitrary constants. It is easy to see that the
equation {1.2) admits the family of periodic solutions depended upon two constants '
in the form ' ,

vo(z.t) = Acosw(z ~ ¢t + ¢), o (1.4)
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where ¢ = f:— is velocity of wave propagation, w is the phase constant.

Our investigation is following:

-a) To-show-the necessary and sufficient conditions for-the-existence-of the— - -

periodic wave solution of the nonlinear equation (1.1) corresponding to the certain
solution of the family (1.4) that is the obtained periodic wave solution of the
equation {1.1) reduces to one solution of the family (1.4) when £ — 0.

b} To give the constructing approximate expression of the periodic wave so-
lution of the nonlinear equation (1.1). Analogous investigation for the periodic
oscillatory solutions of the nonlinear equation of the form (1.1) has been dealt
with in [1, 2, 4].

2. For this aim we consider first the following associative equation:
2

[(c +ea)® — a? 5-1,35 —bu = EF[ —(c+ ea) d:; j:;] (2.1)

Where u=u(Y,e); v =2— ( + ea)t -|— ©; o= oafe); F = f after the substitution

d
y by u; _2 by —(c + ea)— , & is now an indeterminate constant

d¢ 3z LY d¢
Wlth € = 0 the equation (2.1) has the form (degenerate equation for (2.1))

(¢ — a?) d¢2 ~bzu0—-0
or g
| P ° +wluy =0. (2.2)
Obviously the equation (2.2) admits the periodic solution _
uo(z,bj = Acoswy; - (2.3

~ where ¢ = £ — ¢t + p, A is an arbitrary constant. We obtain here the following
results:

Theorem 1. If u = u(v,e) is a periodic solution of the equation (2.1) then
y defined by the relation y(z,t,e) = u[(z — (c + ca)t + p,€] is a periodic wave
solution of the equation (1.1).

The proof is straightforward.

Theorem 2. Let u = u(¥,c} be a periodic solution with respect to 1 of period
27 /w of the equation (2.1) corresponding to a certain solution of the family (1.4).
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One coiains then the relations

2 fw

/Fosin,w¢d¢=0,
/-

2r/w

f Fycoswipdy + 2reaqwiA =0
o
where P p
_ _ 8% GU0)
Fo= F(“D’ dp  © d¢)

g

(2.5)

Proof. Suppose that the equation (2.1) has the periodic solution v = u.(¥,¢). It
is easy to see that the periodic function u.(,¢) is also the periodic solution of

the linsar nonhomogenuous differential equation of the form

d2u 2 cw? g\ d2u.,
d_’t,bz_{_w u-—"‘gé'“liF*— (2CG+EO£ )dl,bz],
where 4 d
u, du,
F, —FI:U*-,_'(C‘{“EQ)JT/) , d¢]
Consequently the following equalities will be held:
2r/w
. — (200 +20?) 2 sinwpdy =0
_*——(ca fa d¢2_smw =0,
0
27 fw .
f F, — 2co+ ¢ 2)52&' wipdyp =0
| F ¢ o e cos =0,
0 ‘

(2.6)

(2.7)

Giving € - 0, u.(¥,€) reduces to ug(v), F. reduces to ap and the equalities

(2.7) will have the form (2.4).

The equalities (2.4) are the system of finite equations determining the con-
stants A and ag, ¢ is still an arbitrary constant. Let A = Ag, ag be the roots of

this system. We have here

ot\elg
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F(Ao cos wy, cwAp sinwyp, —wAg sinwy) sinwydy = 0,

(2.8)



2r/w
/ F(Agcoswip, cwdAgsinwy, —wAgsinwy) coswi
0

1
T arew? A

From the theorems iand 2 we can state.

Theorem 3. The necessary condition for the existence of the periodic wave
solution y = y(z,t, €) of the nonlinear equation (1.1) corresponding to the solution
yo(z,t) = Apcosw(z —ct+ ) of the linear equation (2.2) is that Ap and o satisfy
the finite equations (2.8). )

To the equation (2.1) we associate now an auxiliary system of 1ntegro - chf—
ferential equations of the fcrm

d2v 9 gw? |
E;p—z——l-w V—-——B-ﬁ——.[F (2ca+sa d¢2] +Pcosw¢v+Qsmw¢,
27w 2
EW i 4
P= - _F — (2co + e0?) dz/ﬂ] cos wirdy, (2.9)
0
27/ w 22V
EW [
Q:——;r—- / _F—-(2ca+sa )d¢2]51nw1,bd1/)
0
We have

. 0 .2 -
Theorem 4. The system of equation (2.9) always has the family of —ﬂ--pertodzc
W

solutions depended upon two arbitrary constants A and .

These solutions reduce to (2.3) when ¢ — 0.

Proof. The theorem will be proved by the method of iterations.

For the approximation of 0-th order of the solutions of the systezﬁ of equations
(2.9) we take

Vo(¥) = Agcoswip,

2.10)
Py = Qo =0. (210)

. : ' ) ‘ 27 ..
For the approximation of n-th order of these solutions we take the " periodic
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solutions of the following linear system of equations:

*V, gw? 2y 4 Vn—1
e V",z‘“bz‘[F’*fl - (e + a?) gt |+
+ Py cos wip + Q’T" sinwy, .
o/ A g .
P, = —Ey-?- [ [Fn_l — (2ea+ saz) dzj’:i’_l] cos wipd, (2.11)
0 ' _
L 2r/w ) 2V
EWw 2 n=1 .
Qn = - / [Fn_l — (2¢a + ca®) a5° ] sinwdy,
0
where
dVp_1 dVp_
Fn—l =F[Vn,1,——(c+sa) d¢l , d¢1

The system of equation (2.11) obviously has the family of 27 /w periodic solutions
depended upon two arbitrary constants A and a.

We establish now the sequences of functions {V,(¢,¢, 4, )}, {Pn(e, A, &)},

- {Qu(e, A, @)} and prove their uniform convergence if the functions V.{¢,e¢, A, a),

P.(e, A, o), Q.(e, A, &) are their limits, then it is easy to see that these functions .
satisfy the system of equations (2.11).

For this purpose we make the transformation

Vo — Vo1 = X, coswip + ¥y, sinwp,

Vi Vo 212)
! nol —Xwsinwy + Y,wcoswip. ( )

& dy

The system of the equations {2.11) then can be denoted in the form
®
Ew .
Xn(¥) = Xp(vo) + " / &, sinwidy,
Yo
- (2.13)
Ew
Ya($) = Yalwo) - 55 |

@, cos wipdip,
. ¢0 . S
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where

d?V, _ d?V, _
@n=Fn—Fn—l*(2ca+5a2)( s = 2)+

dy?  dy?
U (P Paor) coswy + (@ — Qulr) sinwy,
Pn - P'n.—l
2x/w i
. Ew _ B o d*V,_1 _ d*V,_,
=—— [Fn_l F_ o _(2ca +ea )( g % )} coslw'qb, )
0 . B
Qn e Qn—l ' ) ) :
2rfw LT L
=% [F 1 — Fn2— (Zea+ sa‘z)(dzvn—ll — szn_z)] sinwiyd.
m T e 2 dyp?
oy

Setting an evaluation on ther quantities | X, (¥}|+|Yn(¥)|; [ Pn—Pr-1]; {@n—Q@n-1|
we can assert that the sequences {V,,(¢,¢,4,a)}, {(Pn(s, 4,2)}, {Qn(c, 4, a}}
are uniformly convergent. Suppose that P.(e, A, ), Q. (g, A, &} are their limits.
Obviously they satisfy the system of equations (2.11) and V.(¢, ¢, A, ) are periodic
in 4 of the period 27 /w.

From this result one deduces.

Theorem 5. The necessary and sufficient condition for the existence of the 2m/w
. - periodic solution in ¢ of the equation (2.1) i.e. of the periodic wave solution of
the equation (1.1) is that
P(e, A, a) =0,
Qe,A,a) =0.

Here are the system of finite equations with respect to A and o, which satisfy the
conditions A(0) = Ag, a(0) = ag. If the following inequality is held

(2.14)

8(P,Q)
I 6(A, a) JJ"‘=Acp,cx=c;a:0 70, (2'15)

then from one pro;)érty of the implicit functions it is easy to deduce that the periodic
wave solution of the equation (1.1) will be unique.

Suppose now that the functions f is analytic with respect to all arguments. In
this case one can express V(¢,¢,4,a). P(e, A, ), Q(¢, A, a) in the power series
ine

V = Vo(4) + Vi) + e*Va(sh) + ...
P=Py+eP;+e*Py+... (2.18)
Q=Qo+eQi+e’Qa+...
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Substituting (2.16) into system (2.9) we can obtain the systems of equations de-
termining the functions Vo(¥), V1(¥), Po, P1,...,Q0, Q1.

Vo(#) = Acoswy,

(2.17)
Fy=@Qp=0.
2V ' .
iw; + WiV, = ——%(Fa + 2cow? Acoswyp + P coswp + Qsinwyp)
2rfw
_ ¥ 2 4

Py = o / (Fo + 2cow® A cos wip) cos wipdy, (2.18)
0
2/ w

Q1= -2 / (Fo + 2cow? A cos wip) sinwipdy.

T

0

3. As an application of this method we consider the following equation de-
scribed the nonlinear wave propagation in the electric cables [3];

323! 2 629'

dy
iz = 5;5+62y+5[ﬁy3+1(1"0y2)——] ; (3.1)

ot

Where ¢ is a small parameter, a, b, g, 4, ¢ are the positive constants.

With € = 0 the equation (3.1} has the form

*yo 2 %yo

Froaial + byo, (3.2)

which admits the periodic wave solution
yo(z,t) = Acosw(z — ¢t + ).
Using the above method the associative equation for (3.1} has the form

[(c +e0)? — a2] g:f% — by = e[ﬁua — (1 — cu®)(c + ea)g—z-] (3.3)

and the auxiliary system of integro-differential equations corresponding to (3.3) .

17



has the form

. d2 dv
[(c + ) — a?] dqb?; — bV = s[ﬂV3 —~(1 - aVz)( + ea)ﬁ]-i—
Peos o T QEmw, | ‘ (34)
2mfw
P= -—Eﬂ_f— :ﬁV —y(12 - chz)(c + sa)%- —{2¢ca+ saﬂ] di;] cos wipdy,
5 .
2mfw ] v 2V
Q= _fq_r“_’. _ﬁVs —~(1- aVi)(c + ea)—‘b — (2ca+ ca ) g ] sin wipdi.
Y

For the first approximation of the solution of the system (3.4) we have

3
3242
P= —A(ZﬁAz + 2caw?)e + ... : (3.5)

V(y,e) = Acoswyp + 25 ——(f cos 3wy) — yow sin 3we) i-]— .

Q@ =-wyA (1 - %Az)e +oes

Giving P =0, Q = 0 one finds

=2 o8B
Vo T T 2cow?

Substituting these results and Y =1z — (c+ eag)t + p into V(¢,€) one finds the
periodic wave solution of the equation (3.1) in the form

-2 3fe
y(z,t,e) = Tacosw[z - (c — 2c£w2t) + tp]—{—

+ E—im—{ﬁcos"&w[z— (c-— 235{52 )+ tp]-

._o-ya-wsin3w[a:— (c—- 3pe t) +fp]}, ' | (3.6)

2cow?

here ¢ is an arbitrary constant.
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vE SONG TUAN HOAN TRONG CAC HE PHI TUYEN
Céng trinh gi6i thiéu didu kién gidi dwoc va céch gidi gin ding mdt phwong
trinh dao him riéng phi tuyén mé t4 qué trinh truyén séng tuin hoan.

Pa thu dwoc digu kién cin va dd vé sy ton tai cla nghiém séng tudn hoan.
Da giéi thidu mot phwong phép gidi gin ding phwong trinh trén.

Dé minh hoa, trong cong trinh ciing khdo sat phwong trinh truyén séng tﬁﬁn
hoan trong diy cap dién.
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