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ON PERIODIC WAVES 
OF THE NONLINEAR SYSTEMS 

LE XUAN CAN 

Vietnam National University, Hanoi 

ABSTRACT. The paper is concerned with the solvability and approximate solution of 
the nonlinear partial differential equation describing the periodic wave propagation. 

Necessary and sufficient conditions for the existence of the periodic wave solutions 
are o-btained. 

An approximate method for solving the equation is presented. 

As an illustrative example, the equation of periodic waves of the electric cables is 
considered. 

1. Consider the nonlinear wave equation of the form 

{1.1) 

where c is a small parameter, a and b are two positive constants; The function 

f ( y, ~~, :~) is assumed to be continuous and Lipschitzian with respect to its all 
arguments. 

When c = 0 the equation {1.1) can be expressed in the form {degenerate 
equation) 

82 yo 2 B2Yo 2 
8t2 = a 8x2 + b Yo, (1.2) 

with the initial conditions of the problem given in the type 

Yo(x,O) = Acosw(x+cp), 

Byo(x,O) 'A . ( ) at =" smw x+cp, 
(1.3) 

where >. 2 = a2w2 - b2 ; A,· cp are arbitrary constants. It is easy to see that the 
equation (1.2) admits the f~ily of periodic solutions depended upon two constants c 

in the form 
y0 (x.t) = Acosw(x- ct + cp), (1.4) 
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where c = ~ is velocity of wave propagation, w is the phase constant. 
w 

Our investigation is following: 

a) To show -the- necessary-and-sufficient conditions·for ·theex:istence-ot'-the 
periodic wave solution of the nonlinear equation (1.1) corresponding to the certain 
solution of the family (1.4} that is the obtained periodic wave solution of the 
equation (1.1) reduces to one solution of the family (1.4) when e:--+ 0. 

b),o give the constructing approximate expression of the periodic wave so­
lution of the nonlinear equation (1.1). Analogous investigation for the periodic 
oscillatory solutions of the nonlinear equation of the form (1.1) has been dealt 
with in [1, 2, 4]. 

2. For this aim we consider first the following associative equation: 

[( 
2 2 ] d

2
u 2 [ ) du du J c+ea) -a d1{; 2 -b u=e:F u,-(c+w d1{; 'd1{; (2.1) 

where u = u(l{;,e:); 1{; = x- (c + w)t + \?i et = a(e:); F = f after the substitution 
ay du ay . du 

y by u; at by -(c + eet) d1{;; ax by d1{;' Ct is now an indeterminate constant. 

Withe:= 0 the equation (2.1) has the form (degenerate equation for (2.1)) 

or 
d2uo 2 
d1{; 2 + w uo = 0. (2.2) 

Obviously the equation (2.2) admits the periodic solution 

uo(1/J) = Acosw1{;; . (2.3) 

where 1{; = x - ct + \?, A is an arbitrary constant. We obtain here the following 
results: 

Theorem 1. If u = u(1{;, e:) is a periodic solution of the equation (2.1) then 
y defined by the relation y(x,t,e:) = u[(x- (c + e:a)t + \?,e] is a periodic wave 
solution of the equation (1.1). 

The proof is straightforward. 

Theorem 2. Let u = u(1{;, e:) be a periodic solution with respect to 1{; of period 
27r /w of the equation (2.1) corresponding to a certain solution of the family (1.4). 
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One obtains then the relations 

where 

21rfW 

j F0 sinw'if;d'if; = 0, 

0 

2rr/w J F0 cos w'if;d'if; + 21rca0 w2 A = 0 

0 

( 
d'uo duo) 

Fa= F uo,- d'if; · c, d'if; 

(2.4) 

(2.5) 

Proof. Suppose that the equation (2.1) has the periodic solution u = u, ('if;, e:). It 
is easy to see that the periodic function u,('if;,e) is also the periodic solution of 
the lin;oar nonhomogenuous differential equation of the form 

(2.6) 

where 

[ 
du, du,] 

F, = F u., -(c + ca) d'if; , d'if; 

Consequently the following equalities will be held: 

2rr/w 

j [F.- (2ca + ca2
) ~;2*] sinw'if;d'if; = 0, 

0 

2rr/w . 

J [F. - (2ca + ea2
) ~;2*] cos w'if;d'if; = 0, 

(2.7) 

0 

Giving e--> 0, u,('if;, e) reduces to u0 ('if;), F. reduces to a 0 and the equalities 
(2.7) will have the form (2.4). 

The equalities (2.4) are the system of finite equations determining the con­
stants A and a 0 , tp is still an arbitrary constant. Let A= A0 , a 0 be the roots of 
this system. We have here 

•• w J F(Aocosw'if;,cwAosinw'if;,-wA 0 sinw'if;)sinr..;'if;d'if; = 0, (2.8) 
0 
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2rr/w 
1 I F (Ao cos w?f>, cwA0 sinw1/l, -wA0 sinw1/l) cos wt 

0 

From the theorems 1 and 2 we can state. 

Theorem 3. The necessary condition for the existence of the periodic wave 
solution y = y(x, t, e:) of the nonlinear equation (1.1) corresponding to the solution 
y0 (x,t) = A 0 cosw(x-ct+cp) of the linear equation (2.2) is that Ao and a.o satisfy 
the finite equations (2.8). 

To the equation (2.1) we associate now an auxiliary system of integra- dif­
ferential equations of the form 

d2 V e:w 2 
[ . .d2Vl . . 

d?f>Z + w 2V = -"/;2 F- (2ca + ca2
) d!f>2 + P cos w1/l + Q sin w1/l, 

2rr/w 

P =-"; I [F- (2ca + m 2
) ~;J cosw1/ld?f>, (2.9) 

We have 

0 

2rr/w 

Q =-"; I [F- (2ca + c:a
2

) ~;J sinw!f>d!f>. 
0 

Theorem 4. The system of equation (2.9) always has the family of 
2

1!" -periodic 
w 

solutions depended upon two arbitrary constants A and a. 

These solutions reduce to (2.3) when c---+ 0. 

Proof. The theorem will be proved by the method of iterations. 

For the approximation of 0-th order of the solutions of the system of equations 
(2.9) we take 

Vo(IP) = Ao cosw1/l, 

Po= Qo = 0. 
(2.10) . 

For the approximation of n-th order of these solutions we take the 
2

1!" periodic 
w 
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solutions of the following linear system of equations: 

d
2
Vn 2 e:w

2 
[ ( 2) d

2
Vn-l] 

d,P 2 + w Vn = -/;2 Fn---1- 2ca + ea d,P 2 + 

+ Pncosw,P + Qnsinw,P, 

2rrjw 

e:w J [ 2) d
2
Vn-l) d·'· Pn = --;;:- Fn-1 - (2ca + e:a d,P 2 cos w,P '~-'• (2.11) 

0 

· 2rrfw 

e:w J [ ( · 2) d
2
Vn-l) . ·'·d·'· Qn = --:;. Fn-1 - 2ca + ca d,P 2 smw'f' '~-'• 

0 

where 

[ ( ) 
dVn-1 dVn-1] 

Fn-l = F Vn-1>- c + ea d,P , d,P · 

The system of equation (2.11) obviously has the family of 2rr fw periodic solutions 
depended upon two arbitrary constants A and a. 

We establish now the sequences of functions {Vn(i/J,e:,A,a)}, {Pn(e:,A,a)}, 
{ Qn(e, A, a)} and prove their uniform convergence if the functions V. (,P, e:, A, a), 
P.(e:,A, a), Q.(e:,A, a) are their limits, then it is easy to see that these functions 
satisfy the system of equations (2.11). 

For this purpose we make the transformation 

Vn - Vn-1 = Xn cos w,P + Yn sin w,P, 

dV1 dVn-1 . Y. 
d,P- -~ = -Xnwsmw,P+ nWcosw,P. 

(2.12) 

The system of the equations (2.11) then can be denoted in the form 

(2.13) 
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where 

( 2) ( d2
Vn-1 d

2
Vn-2) 

Cl.in = Fn - Fn-1 - 2ca + ea d¢ 2 - d¢ 2 . + 

+( p n c::-pn-1)coswf/! +(Q,; --' Q1t:::t) sin w,P, 

Pn- Pn-1 
211-jw . 

ew J [ ( 2J(d2
Vn-1 d

2
Vn-2)] = - -;;:- Fn-1 - Fn-2 ~ 2ca + ea d¢2 - d¢ 2 cos w,P, 

0 

Setting an evaluation on ther quantities IXn(.P)I+IYn(.P)I, IPn-Pn-11·, IQn -Qn-11 
we can assert that the sequences {Vn(,P,e,A,a)}, {(Pn(e,A,a)}, {Qn(e,A,a)} 
are uniformly convergent. Suppose that P.(e,A,a), Q.(e,A,a) are their limits. 
Obviously they satisfy t)l.e system of equations (2.11) and V, (,P, e, A, a) are periodic 
in ,P of the period 211" / w. 

From this result one deduces. 

Theorem 5. The necessary and sufficient condition for the existence of the 21r jw 
- periodic solution in ,P oi the equation (2.1) i.e. of the periodic wave solution of 
the equation ( 1.1) is that 

P(e, A, a) = 0, 

Q(e, A, a) = 0. 
(2.14) 

Here are the system of finite equations with respect to A and a, which satisfy the 
conditions A(O) = Ao, a(O) = ao. If the following inequality is held 

I a(P, Q) I 1-
a(A, a) A=A0 ,cx=cxo O, 

(2.15) 

then from one property of the implicit functions it is easy to deduce that the periodic 
wave solution of the equation (1.1) will be unique. 

Suppose now that the functions f is analytic with respect to all arguments. In 
this case one can express V(,P,e,A,a). P(e,A,a), Q(e,A,a) in the power series 
in e 

V = Vo(.P) + eV1(.P) + e2V2(,P) + ... 
P = Po + eP1 + e 2 P2 + .. . (2.16) 

Q = Qo + eQ1 + e2Q2 + .. . 
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Substituting (2.16) into system (2.9) we can obtain the systems of equations de­

termining the functions Vo(t/1), V1 ( 1/1), Po, P1, ... , Qo, Q1, · .. 

21rjw 

Vo(t/1) = A cos wi/J, 

Po= Qo = 0. 

w f -P 1 =- 1f (Fo + 2caw2 Acoswi/J) coswi/Jdt/1, 
0 

21rjw 

Q! = -; J (Fo + 2caw2 Acoswi/J) sinw1/Jdi/J. 
0 

(2.17) 

(2.18) 

3. As an application of this method we consider the following equation de­
scribed the nonlinear wave propagation in the electric cables [3]: 

(3.1) 

Where c: is a small parameter, a, b, f3, "/, a are the positive constants. 

With c: = 0 the equation (3.1) has the form 

(3.2) 

which admits the periodic wave solution 

Yo(x,t) = Acosw(x- ct + cp). 

Using the above method the associative equation for (3.1) has the form 

(3.3) 

and __ the auxiliary system of integra-differential equations corresponding to {3.3) 

17 



has the form 

. d2 u [ . · dV] 
((c + ~a)2 - a2

) d,P2 - b2V = ~ {3V3
- '1'(1- uV2 )(c + ea) d,P + 

-p cos w,Pi= Qsfu w'i/J, - --. ----(SAj 

21r/W 

P = - ~: j [f3V 3 
- '1'(12- uV2 )(c + ea) Z -(2ca + ea2

) ~;]cos w,Pd,P, 
0 

21r/W 

Q =- ~: j [f3V3
- '1'(1- uV2)(c +~a):; - (2ca + ea2

) ~;] sinw,Pd,p. 
0 

For the first approximation of the solution of the system (3.4) we have 

As . 
V ( 1/J, ~) = A cos w,P + :

2
b2 ({3 cos 3w,P - ')'UW sin 3w,P) + ... 

(
3 2 2 P=-A 4{3A +2caw )~+ ... 

Q = -w')'A ( 1- ~A2 )~ + ... 

9iving P = 0, Q = 0 one finds 

3{3 2 
Ao = .,j(i , ao =- · ·· 

2cuw2 

(3.5) 

Substituting these results and 1/J = x- (c + ea0)t + tp into V(,P,~) one finds the 
periodic wave solution of the equation (3.1) in the form 

y(x,t,~) = Jucosw[x- (c- 2:~~2 t) +tp]+ 

+ 4b2: 3; 2 {.Bcos3w[x- (c- 2:~2 t) + tp]-
- ')'UW sin3w [x- ( c-

2
:::2 t) + tp]}, (3.6) 

here tp is an arbitrary constant. 
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vE s6NG TUAN ROAN TRONG cAc H~ PHI TUYEN 

Cong trlnh gi&i thi~u di~u ki~n gi<l.i dm;rc va each gi<l.i gk dung m{>t phmmg 
trlnh d~o ham rieng phi tuyen mo ta qua trlnh truyen song tu'a.n hoan. 

Da thu dU'q'C dieu ki~n ck va du ve Slf ton t~i ella nghi~m song tuk hoan. 
Da gi&i thi~u m{>t phmmg phap giai gk dung ph=g trlnh tren. 

D€ minh h<;>a, trong cong trlnh ciing khao sat phmmg trlnh truyen song tuk 
hoan trong day cap di~n. 
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