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ABSTRACT. In this paper, the boundary conditions for modified Navier-Stokes equa-
tions system are presented, and the complementary equations on the boundaries are es-
tablished. '
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1. Navier-Stokes equation system

The Navier-Stokes equation system describing vertical two-dimensional un-
steady flow for viscous incompressible fluid has the following form (see [1]-[5])

*"é}"‘-l-uac" +w5—;+;$ = vAw, (1.1)
d
gu Ow_,,
dz Oz

where 'z, z are coordinate axes, (u,w) is the velocity vector, p - the pressure, p -

the density, v - the kinematic viscosity, A = —— + —= -
0z2  9z?

It is well known that, the equation system (1.1} with the initial condition
Ui(z,2,0) = Up(z,2),

where



and the boundary conditions on the boundary dG of the region in consideration

G:
Uy(z, 2, t)‘ac =0

has the unique solution in the space of generalised functions (see [1}, [2]).

‘The determination of pressure p from equation (1.1) is very difficult. To
avoid it, the artificial compression component is added to the continuity equation
of (1.1). Then we obtain the following equation system (see [3], [4]}. (Let us take

p=1)

d ad Jd
u u——l—L+ —E-i--a—e-vAu,

Bt az dz
Jw ow Bw dp
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In actual fact, it is difficult to give all 2 boundary conditions at any part of
the boundary.

To overcome this insufficiency of given boundary conditions, at the neigh-
borhood of the part of boundary, where all the 2 boundary conditions can not
be given, we consider the following modified Navier-Stokes equation system for
determining the solution values on this part of boundary.

2. Modified Navier-Stokes equation system (1.2)

Let the right hand side of the equation system (1.2) be known. For example,
their values were taken at the previous time step, or the fluid is inviscous (v = 0).
Then we obtain the following equation system

du du du

'I‘.L—"'--f"'w—-}-— ¢1:

at dz dz
Ow ow dw Bp

at u_é_ +w az = b2, (2.1)
dp + du N Bw —o
8t 8z ' 3z

where ¢, ¢y are known functions.

The system (2.1) may be written in the vectorial form:

oU au oU
_é?+A +B§;=‘I’, (2.2)
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1 w 0 1 w 0 0
- ¢2 ’ A= 0 u O ) B = 0 w 1

The system (2.1) is quasilinear hyperbolic equa.tion system. Really, the matrix
A, = 31A+32B where 31, s, are real numbers and s?+s2 # 0, has three different
real eigen values:

Al = s1u + sow = w,,

* .w* VA*

Ay =—+
VA
Agz%———z—-, where A, = w? + 4(s? + s2).

It is well know that (seé_{ﬁ], [7]) the boundary problem of linear symmetric
hyperbolic equation system |

v _a8V 3V '
D*5;+Aa—+B§;—F, ) (2.3)

where D, A, B are symmetric maftrices and D > 0, has a solution if, besides the
initial conditions the number of given bounda.ry‘ conditions is equal to one of the
negative eigen-values A; of the matrix A, = nzA + n,B, where (nz, n) is the
external normal vector of the boundary 2G.

In addition, the equation system (2.3) has the unique solution continuously
depending on the initial conditions and on the right-hand side if the boundary
conditions are dissipative.

The boundary condition is said to be dissipative if any vector V satisfying
this condition has to satisfy the following inequality

/ ([neD + nzA +n,BJV,V)dS > 0, (2.4)

where S = G x [0,T], (n¢, ng, nz) is the external normal vector of the sqrfa.ce S.

In the case, when the boundary 8G is fixed, then n; = 0 and inequality (2.4)
may be replaced by the following inequality

(4.V,V) = ([n,A+n,BlV,V) >0 (2.5)
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Let us take in the equation system (2.3)

vy 1 00 Z 0 1 w 0 0
V=|v,|,D=E=|010),4A4=|0 w 0),B=|0 % 1],

vs 0 0 1 1 0 0 0 1 0
(2.3a)

‘where ¥ and w are known values.

It is easy to verify that, the eigen values of the matrix A, =n A+ nyﬁ are

T, + VA Azwn—\/ﬁ (2.6)
-~ 9 3 3 2 » "

Al =N U+ N W =W,, Az=
where A =%2 1 4.

From (2.6) one deduces the number of boundary conditions which is necessary
to be given on the boundary for equation system (2.3), {2.3a)

a - At the inflow boundary (W, < 0) it is necessary to give two conditions
b - At the outflow boundary (@, > 0) only one condition is required
¢ - At the solid boundary (@,, = 0) one condition is needed.

Now we find the dissipative boundary conditions for the equation system (2.3),
(2.32) by the same method as in {10].

Putting
V = PW, (2.7)
Wy ngy np O
where W ={ ws |, P=|n, —-ng 0], .
w3 0 0 1
" we have
P*=pP1=p,
where P* is the transposed matrix of P and
(4,V,V) = (A.PW,PW) = (P*4A,PW,W) = (4,V,V), (2.8)
where
. (w0 1
A, =P'A,P=]| 0 w, 0O
1 0 0

The eigen-values of the matrix A, are

W, +VA W, — VA

AL =Wy, Ag 5 "“—2— ) (2.9)
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1ere A = W2 + 4 and their corresponding eigen vectors are

(En+\/K\ (Tlﬁﬂ."‘\/K
, L3 =

a b

Fay 1.1

Zy = (z), Ly = o 0
e ) e

1ere a=\/(ﬁn+\/3)2—}—4, b=\/(wn—\/5)2+4.

Denoting
Tn + VA T, ~+VA
Z = (Z1,24,23) = 1 g g ,
" 0 2/a 2/b

is well known that for symmetric matrix ;fn we have

A; 0O

Z*A.Z=A={0 X 0], (2.10)
0 0 Xz
here Z* is the transport matrix of Z.
Putting
W = ZT, (2.11)
here T = (t1, t3, tg)7,from (2.8), (2.10) and (2.11) one deduces
(AnV,V) = (AW, W) = (A, ZT, ZT) = (2" A, ZT, T)
= (AT, T) = Art? + Aot3 + A3td, (2.12)
here |
( t1 = W2 ’ _ —
’ Wy, + \/E Wp — \/K
; a +a,(\/Z—Wn)w wy =tz T te
= 1w y .
N/ WA wy =t
i 2 2
tz = —_b_wl + ng, wg = —ty+ Et_g .
2VA 4/A a
| (2.13)

Using (2.9) and (2.12) we seek the boundary conditions so that any vector V
1tisfying this condition verifies the following inequality )

Wpt? + ;‘/‘St‘;’- + 2 ;‘/‘&tg > 0. (2.14)

nvl
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These boundary conditions are:
1. At the inflow boundary (W, < 0)

a. The condition pair

.: we = Oa . _
| miVE 215)
: - W Wz = 0
2
9
(31

=0, A . .
and the inequality (2.14) is satisfied.

is dissipative because of (2.13) { .
3 =

b. The condition pair

b(w, A) A —,
(—-biaﬁ)wl-i-( (@, + VA) iaﬁ‘/— d ) =0
2 2
is also dissipative if & and f satisfy the inequality
.w_na2+wn+\/-A"+wn_\/Kﬁ220.
2 2
2. At the outflow boundary (w, > 0)
Each of the following two boundary conditions is dissipative
A+w,
a. —wy + -}/——_%D——wg =0 (2.16)

because of (2.13): t3 =0 and (2.14) is satisfied.

b. ws =0 (2.17)

because of (2.13): t3 = -%ts, % > 1 so (2.14) is satisfied.

Now we consider the transformation

V=U-Y¥, (2.18)
where
vy u Y1
V=]v], U=tw]l], ¥Y=P¥ =1
U3 r AN Y



and o1, 71, ¢1 are functions of variables (z, 2,t). These functions have continuous
first-order derivatives and have the following properties. On any part (@i, b;) of
the boundary 8G-

o If the boundary condition is wy, = then—---go-r-|---(-a--_ By =P

e If the boundary condition is ws = then nll(a_ b) =7

e If the boundary condition is p = ¢ then §1|(a_ b.)'= ¢. | (2.19)
o If the boundary condition is p — w, = x then (¢ — pl)l(a- by = X-
. o - |
¢ If the boundary condition is EU_;—\/_ p— = f then
W+ VA _
( 5 St ‘Pl) o) !

Putting (2.18) into the linearized equation system (2.2) with the coefficient
matrixes A, B, where &, W are known values of the previous time step tx, we
obtain the equation system (2.3), (2.3a)

— tA-—-+B——=F, (2:3)
where

at oz 9z

The linearized equation system (2.2) and the equation system (2.3) are equiv-
alent. If the linearized system (2.2) has a unique solution continuously depending
on the initial condition and on the right-hand side, the system (2.3) has also a
unique solution that continuously depends on the initial condition and on the
right-hand side, and vice versa. '

The solution is now said to satisfy the c-property if it contmuously depends
on the initial condition and on the right-hand side.

From this we can show the bounda.ry-condltlons under which the linearized
boundary value problem (2.2) has unique solution satisfying the c-property.

In fact, from (2.7) and (2.18) one deduces:
W=P V=PV =PU-¥)=PU-¥,,

where
un ng ny 0 u Wy ©1
W=lwy |}, PU=|n, -n, 0O wl=lw, |, ¥1=|m
wWa 0 0 1 P p €1




Therefore

wy 7 = Wy, _r(pls
w2 = w, — N1, (2.20)
ws =p-—Q.

- 1. At the inflow boundary {#, < Q)
Wy =1, -
The condition pair VA + @, ensure that the linearized
- Wt p={
boundary problem (2.2) has a unique solution satisfying the c-property. Indeed,
from (2.19), (2.20) one deduces {2.15) which is dissipative for the equation system
(2.3). :

2. At the outflow boundary (W, > 0)

Each of the following two boundary conditions ensures that the linearized
boundary problem (2.2) has a unique solution satisfying the c-property

because the corresponding boundary condition (2.16) and (2 17) for the system
(2.3} are dissipative. :

We consider the simple case, where the flow is very slow and the convective

du Ou ow dw
components (u——- + w—) ( + w-——) are very small in comparison with
a Oz EN dz

the other ones. Omitting the high order of the small components or bringing them
to the right-hand side and considering them as known, using their values at the
previous time step ty, we obtain the equation system

aolU ou aUu
LA 2 - = .
at T L Az + By Jz v (2.21)
where
U 0 0 1 0 00
v=|w]|, A,={00 0], B,={0 0 1
P 1 0 0 0 10
E-quation system (2.21) is also a quasilinear equation of hyperbolic type. The
matrlx A, = ngA,, +n,B,, has the following three eigen-values: AI;I =0, ,\I; =1,
}«3 = —1. Therefore at any of the boundary type for the linearized boundary

problem (2.21) it is necessary to give only one boundary condition.
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By an argument analogous to that used for the equation system (2.2) we get
boundary conditions for the linearized equation system (2.21), which has a unique
solution satisfying the c-property. In fact, each of the following three boundary
conditions ensures-the-uniqueness-of-a-solution-satisfying the csproperty

a. p—w, =X,
b. Wn =,
c. P =¢.

3. Complementary equations on the boundary

In order to determine the three unknown function u, w, p on the boundary
dG, where only one or two boundary conditions are given, it is necessary to con-
struct some complementary equations, which combining with the given boundary
conditions give a close equation systern for determining the functions u, w, p on
the boundary. - '

Let o; and 7 (¢ = 1,2,3) are left eigen values and corresponding left eigen
vectors of the matrix A of the equation system (2.2) we have

A = o7,
LU | 8UN /38U Uy rdU
(G +45;) — i rogy) =7 (g).,
Denoting
0 1 0
Yy |p o VBazwu
1= 1‘-*2 = 2 H AA':u2+4’
s A
’ 10 —————-‘/_g+“
from (2.2) it yields .
oUu au au oU aU
- Zl=s_0"10(= bl
Baz- ? (3t +A6:n) 2 ”(at +A8‘a:)
dU
=& -0l 2) 3.1
®-0 ‘Ti(dt)z,- ? ( )

where

(@). =% e (&,

f_U,
=

= »(%).,
dUu
Fr
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By an analogous argument one deduces:

aUu -1 {.. (dU)
—_— =P - == ) 3.2
A oz ? Q Vi dt Zy ( )
where p; and 7; (j = 1,2,3) are left eigen values and their corresponding left
eigen vectors of the matrix B in (2.2)
. (dU
1(.——{.)21
(99) =942 [5(9) = | m(Z)
dt /s ot ez 11"\ a )., 2Ndt /s |
' a(®)
3 dt Z3
1 0 0
171 0 1 VAB - w '
Q=17 |= 2 , Ap=uw?+4.
Vs 0 1 _VABtu
2 -’
Putting (3.1}, (3.2) into (2.2) we get (see [8], [9])

oU dU dU

% ye-q! 1—(—— — Q! *-(— = .

ot "\ )z'- AN A )yj 0, (3.3)
where

0 VAsg+u VAr—u 1 0 0
. 2 A4 2vA 4 0 VApt+w Ap-—w
07 =11 0 0 , @71= 2v/Ap 2v/Ap
1 -1 I -1
0
vVAg VA4 VAR VAR

Equation system (3.3) may be rewritten in the evident form

3 , _
R T I CA R 71C
R GRS
A Z3
3 d B ¢d d
e T N SCI N

+\/jk—3(j_f)za + ¢35 =0,

33



J d
(), ), ), ),

). ) ). (), o

\/ VA4 - v/ SAs —
where o = AA+u , Qg = ‘; u,ﬁl AB—I-w,ﬁz:“m"%_w_.

From equa,tlon system (3.4)-(3.6) it is easy to deduce the complementary -

equations on the boundary.
1. At the left boundary
a. For the inflow (w, = —u <0)

. ) 2
R Al ) Bl ) M v v v v O

(8 ) (®), dee e

b. For the outflow (w, = —u> 0)
e Equation (3.5},
» Equation  (3.7).

2. At the right boundary
a. For the inflow (w, = u < 0)

I T T TE I N

9t ezt ap\dt
d
o NCIRE O JEE B TV

b. For the outflow (w, = u > 0)
¢ Equation | (3.5) ,
¢ Equation (38) .
By an analogous argument we can obtain the characteristic form of the equa-

tion system (2.21)
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dy i/du 1/dp 1(du l(dp‘
=) (=) =Z(=) -z “{E) 44, =0,
t)zl Z(dt)zz 2(dt)z2 2 dt)za+2 dt)za 2

ot (d (3.9)
O _(duy _Leduy _Ledy Ledwy  dgdny
a—t“(d_t)zl"”é(dt_)zg z(dt)22 'Z(dt e 2\dt)a (3’.10}
I - I Y NEE MR C

N o]

(@) 3@,

From these equations we obtain the following complementary equations on
the boundary

%)
d
~3(&).. "

1. At the left boundary

e Equation (3.10),
L () (@),

S ORI C R

. At the right boundary

%]

Equation (3.10),
ot (@) (@)@, |

d d d :
)5, 5538, e
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MOT PHUONG PHAP XAC DINH GIA TRI NGHIEM TAI BIEN
DOI VO1 HE PHUONG TRINH HAI CHIEU DUNG

D& gidi hé phwong trinh Navier-Stokes hai chidu déng, cin phai cho tai bién

hai di2u kién bién. Tuy nhién viéc cho d4 cd hai digu kién bién trén moi doan bién
1a r4t khé khin.

Bii bdo trinh béy mot phwong phdp xac dinh céc gid tri nghiém tai cic doan

bidn, md & dé khéng thé cho du c3 hai ditu kién bién, nhé vide gidi mét hé phwong
trinh bién dang cda hé phwong trinh Navier-Stokes, trong lan cdn doan bién d6.
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