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INTERACTION BETWEEN NONLINEAR
PARAMETRIC AND FORCED OSCILLATIONS

NGUYEN VAN DAO, NGUYEN VAN DINH, TRAN KM CHI

The interaction of nonlinear oscillations is an important and interesting prob-
lem, which has attracted the attention of many researchers. Minorsky N. [5] has
stated “Perhaps the whole theory of nonlinear oscillations could be formed on the
basis of interaction”.

The interaction between the forced and “linear” parametric oscillations when
the coeflicient of the harmonic function of time is linear relative to the position
has been studied in [1, 4]. In this paper this kind of interaction is considered
for “nonlinear” parametric oscillation with cubic nonlinearity of the modulation
depth. The asymptotic method of nonlinear mechanics [1] is used. Our attention
is focused on the stationary oscillations and their stability. Different resonance
curves are obtained.

1. Equation of motion and approximate solution

Let us consider a nonlinear system governed by the differential equation
P4 wiz= s[Az-— hi — 4z® + 2pz® cos 2wt + r'cos(wt - 6)] , (1.1)

where £ > 0 is the small parameter; h > 0 is the damping coeflicient; v > 0, p > 0,
r > 0, w > O are the constant parameters; eA = w? — 1 is the detuning parameter,
where the natural frequency is equal to unity; and § > 0 is the phase shift between
two excitations. The frequency of the forced excitation is nearly equal to the own
frequency w, and the frequency of the nonlinear parametric excitation is nearly
twice as large. So, both excitations are in fundamental resonance. They will
interact one to another.

Introducing new variables a and ¢ instead of z and z as follows,

t=acosl. &= —awsinf, 0 =wt+ ¢, (1.2)
we have a sjrsteni of two equations which is fully equivalent to (1.1)
da ¢ dip €
= _Z Fsai =2 1.3
= wFsm 6, a % chos 8, | (1.3)
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where :
F = Az — hi — 45° + 2pz® cos 2wt + r cos(wt — 6).

The equations (1.3) belong to the standard form, for which the asymptotic method
is'applied [1]. Thus, in the first approximation we can replace the right hand sides
of (1.3) by their averaged values in time. We have the following averaged equations:

da £ dy £ '
—_— s — —— _— = —— 1.4
&~ wl v T 70 (14)
where
fo = 2hwa + pa® sin 24 + 2r sin(¢ + 6),
9o = aE + pa® cos 24 + r cos(¢ + 6), (1.5)
3
E=A-~d?
4’)"1 :
The stationary solution (aq,%o) of the equations (1.4) are determined by
equations a-—O d—q‘b-—Oor | |
fo = 2hwao + pad sin 2¢ + 2r sin (o + 8) = 0,
Go = aoEo + pad cos 24 + rcos(',ﬁo +6) =0, (1.6)
g .
Eo = A - Z’Ya'g)

or equivalently
f1 = focostho — Gy sintho

2

3 ro.
= —rsind + 3 sin(290 + 6) + 2hwag cos Yo + (pai — Eo)ag sinty = 0,
91 = fosinto + gocos g = -

(1.7)

3 r
= ;rcos 6 — 5 cos(2¢g + 6) + 2hwag sin o + (pad + Ep)ag cos gy = 0.
Below, for simplicity, we consider only the case § = 0. To eliminate cos 2y and
sin 2¢g from (1.6) and (1.7), we use the combinations

r—
f= Efo - pagf1 = rhwag — [Pag(pag — Eg) — r2] sin g
— 2phwag cos ¥y = 0,

" r 3 : 1.8
g= 590 + pa391 = ‘éaoEo + Erpag + thwag sin g (1.8)
r? 4¢ 2
+ [? + pag(pag + E'o)] cos Py = 0.
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The condition for equivalence of (1.6) and (1.8) is % # 4p%a§. As usual, equations
(1.8) are considered as two linear algebraic equations relative to two unknowns u
and v : 4 = gin gbo_; v = costPo. The elimination of the phase 5 can be done by

1. The “ordinary” case when the determinant D of the coeflicients of u and
v in (1.8) is different from zero, where

2
T
D= 2phwag - +pag(pag + Eo) |
pad(pa? — Eo) - r* 2phwal
i 2
. T
D = 4p*h*w?ad + [r* — pag(pal — Eo)] [‘2— + pag(pad + Eo)]. (1.9)-

2. The “critical” case when D =0

2. Resonance curves in system without damping
Supposing that & = 0, the equations (1.6) become

(pa% cos g + r)singg =0, (1)
ao(Eo — pag) + rcos 1o + 2pad cos® ¢ = 0. '

From the equations (2.1) it follows

a) ¥o = 0 which corresponds to the resonance curve C{l):

3
Eo="pa?,—-r— or A= (j—up)ag—aL, ag # 0. (2.2)
: 0

b) 4o = 7 which corresponds to the resonance curve 01(2):

3 : r
A=(—'f~p)a3+——, ag # 0. (2.3)
4 Qg

— . 7
c) ¥ = tarccos (—g) which corresponds to the resonance curve Co:
a
0

r? r?

3
Ey=pa:— — or A:(—- )a.z——-— 2.4
| 0 bay pag 4'7 + Pjag pag ( )
with limitation: r2? < p2a®.
The curves Cl(l), Cl(z) and C, are presented in Fig. 1, where the curve Cy is
only the upper part of the curve (2.4) ended at point I(r? = p*a§). The parameters
for Fig.1 are chosen so that 4p > 4.
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3. Resonance curves in the system with damping

Solving the system (1.8) relative to sinto and cos 4o we obtain

D
Siﬂ'fl)oz%l_a COS¢O: l—; 3
1
Dy = ~Zrhwag[r® + 4pag(Eo + 2pag)],

ra .
Dy, = —2—0 {4ph2w2ag + (Eo + 3pa§) [pa.g(pag — Ep) - ,'_2] }, |

,2
D = 4p*h2%w%ad + [r2 — pag(pal - Eo)] [E + paj(pal + Eo)] :

r # 2pad.

(3.1)

Eliminating the prha,se o from (3.1), we obtain the following equation of the
resonance curve H;:

where

After simple, but rather long calculations, we can write {3.3) in the form

where

W(A,ad) =0,
W = D? + D - D%
2
7 —
W = (Z —Pzag)W,

W = 0pEj + on B2 + a3 E2 + a,
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(3-3)

(3.4)

(3.5)



Qg = pgaéou ay = 2p’l’2&g, Eg = A - Tag!
= —2ptal + 8p?h3wad’ + pPriad 4 rial,

3.6
pea,lq... 8p4h2w2a1i ______ 3,_2 4 12+16p2h4 4 10 - ( )

— 20p%r?h2w?ad + 3r'p?ad + rh%ulal - rﬁ.

t is easy to verify that the determinant D is different from zero along the reso-
1ance curve (3.2). Since r? # 4p%af (equivalence condition of (1.6) and (1.8)) the
:quation (3.2) is equivalent to '

W(A,a?) =0.- (3.7)

The resonance curves have three branches and are presented in Figs 2-3 for
the parameters r = 0.01, p = 0.1, v = 0.25, and w® = 1.1. With increasing k, the
upper branch 1 moves up and the two lower branches 2 and 3 are tied and then
separated, as branches 4 and 5, see Fig.2 for 2 = 0.01 and Fig. 3 for h = 0.027.

-0.10 0.10 =0.10

Fig. 2

4. Stability of stationary oscillations

Setting in (1.4) a = ao +6a, ¥ = 1Po+6¢ and neglecting the terms with higher
than one degree relative to 6a, §3 we have the following equations in variation:

e [(29) 50+ (2) ).
G =25 (52) 5+ (52)5%]
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where the symbol ( ) denotes that a = ag, ¥ = tbo. The characteristic equation
of this system of equations is

o a
__( fo) s __( fo)
__(ago) __"(390) g _
da /o 0
The first stability condition will be
afo 390
S1=a7—+2— =4h > 0. 4.3
P %00, * 3o wao (43)
The second stability condition is
_9f0 85, 9f, 99,
2= Ba0 B0 v Ba0 (44)
From equations (1.8)
r 3 N7 3 . -
f= (E — pag cos t,bo) fo + (pag sin¢g)d,,
. = Ty_
s = (pasin o) Fo + (paScon o + - )7
and from f, = 0, G, = 0, it follows:
- =|— = 8. 4.5
dao O O dag (4 p'ag)s: (45)
The second stability condition (4.4) is equivalent to
af 9g af dg 1 oW .,
Sy = — — = >0, T=—~- . 4.6
TT (Bao d%o  Bio Bao) 2DT dao ;P (1)
ow ow —
According to (3.4) we have 30 = T3ac along the resonance curve W = 0,
8]
Therefore the condition (4. 6) ta.kes the form:
(174)] BW | l
So=——5 >0 : 4.7
= Doad” (4.7)
_ 2
It is noted that since W| -0 = —r8 < 0, D| _o = = > 0 one can easily
ap= 0= 2

identify the regions of the {(ag, A) - plane where the functions W and D are positive -
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(+) and negative (—) and therefore know the stability branches of the resonance
curves. In Figures 2 - 3 these branches are presented by heavy lines, while the
instability branches are shown by dotted lines.

5. Conclusion

The interaction between cubic nonlinear parametric and forced oscillations
in a system governed by the differential equation (1.1) has been investigated by
the asymptotic method of nonlinear mechanics. The typical amplitude curves of
stationary oscillations are presented in Figs 1-3. The amplitude curves in Fig
1-2 are similar to that of the interaction between linear parametric and forced
oscillations (see [1], Figs 94 and 98, page 275). The amplitude curves in Fig.3
characterize the nonlinear system under consideration. For small values of ay the
forced component is dominated and the corresponding parts of resonance curves
are similar to those of forced oscillation. For large values of a¢ the influence of the
parametric component is clear, and as the result of the interaction between two
oscillations, the resonance curve has the form of an upward parabola.

The stability of the stationary oscillations obtained is studied by using the
variational equations. The stability criterion in the form (4.7} is convenient for
geometric interpretation. The jump phenomenon takes place on some branches of
the resonance curve.

This work was financially supported by the Council for Natural Sciences of
Vietnam.
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TUONG TAC GITA DAO DONG CUONG BUC
VA THONG 80O PHI TUYEN

Sw twong téc cla cic dao dong phi tuyén 13 mot bai todn hay, quan trong va
d3 thu hit sy chd § cda nhidu nhi nghién céu. Minorsky N. di ph4t bifu ring:
“Toan bd Iy thuyét dao dong phi tuyén ¢ the duwroc hinh thinh dva trén co s&
cia sy twong tac

Sw twong tac giita dao déng cudng bic va dao ddng théng s§ “tuyén tinh”,
khi hé s8 cta ham diéu hoa clda thoi gian 13 tuyén tinh déi véi thong s8 dinh vi
da dwoc nghién ciru trong cic tai lidu [1] va [4]. Trong bai bdo ndy xét sy twong
tac giira dao dong théng s8 phi tuyén bic ba véi dao déng cwong birc. Phwong
phdp tiém cén cda co hoc phi tuyén [1] 8 dwoc st dung dé nghién ctu céc dao
déng dirng vi sy on dinh cda chang.

Céc dwdong bién - tan dién hinh cda dao dong dirng dwoc biéu dién trén hinh
1-3. Céc dwdng cong trén hinh 1-2 ¢é dang fwong tw nhw trudng hop twong tic
giita dao ddng cudmg birc v thong s6 “tuyén tinh” (xem [1], hinh 94 vi 98 trang
275). Céc dwdmng cdng hwdng trén hinh 3 rit dic trung cho hé phi tuyén khdo
sat. Véi céc gid tri ao nhd thanh phin cuéng bc déng vai tro 4p ddo va phin
dudng céng huwdng twong Gng cé dang twong ty nhu trong trirdng hop dao déng
cuong birc thuin tdy. Véi nhitng gid tri 16m cda ao, 4nh hwéng clda thanh phin
thoéng s8 kha r5. Két qud cla st twong tac gitra hai dao dong ké trén 13 dwdng
cong hudng cé dang parabdn.

Sw 6n dinh cda cdc dao ddng du'ng dwoc nghién ciu bdng céch st dung
phu'O'ng phép bién phén. Tiéu chudn 6n dinh dwéi dang (4.7) rdt thuin loi cho
viéc phan dinh cic nhénh on dinh.
Hién twong nhiy bién d9 cling xuit hién trén mét s8 nhinh cda dwdng cong
hwéng.
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