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INTERACTION BETWEEN NONLINEAR 
PARAMETRIC AND FORCED OSCILLATIONS 

NGUYEN VAN DAO, NGUYEN VAN DINH, TRAN KIM CHI 

The interaction of nonlinear oscillations is an important and interesting prob­
lem, which has attracted the attention of many researchers. Minorsky N. [5] has 
stated "Perhaps the whole theory of nonlinear oscillations could be formed on the 
basis of interaction". 

The interaction between the forced and "linear" parametric oscillations when 
the coefficient of the harmonic function of time is linear relative to the position 
has been studied in [1, 4]. In this paper this kind of interaction is considered 
for "nonlinear" parametric oscillation with cubic nonlinearity of the modulation 
depth. The asymptotic method of nonlinear mechanics [1] is used. Our attention 
is focused on the stationary oscillations and their stability. Different resonance 
curves are obtained. 

1. Equation of motion and approximate solution 

Let us consider a nonlinear system governed by the differential equation 

x + w2 x = <: [ ~x- h± -1x3 + 2px3 cos 2wt + rcos(wt- 8)], (1.1) 

where<: > 0 is the small parameter; h 2': 0 is the damping coefficient; 1 > 0, p > 0, 
r > 0, w > 0 are the constant parameters;"~= w2 -1 is the detuning parameter, 
where the natural frequency is equal to unity; and 8 2': 0 is the phase shift between 
two excitations. The frequency of the forced excitation is nearly equal to the own 
frequency w, and the frequency of the nonlinear parametric excitation is nearly 
twice as large. So, both excitations are in fundamental resonance. They will 
interact one to another. 

Introducing new variables a and t/J instead of x and :i; as follows, 

x =a cosO. ± = -awsin8, 8 = wt + 7/J, 

we have a system of two equations which is fully equivalent to (1.1) 

(1.2) 

da . " . d,P " - = --Fsm8 a-= --Fcos8 (1.3) 
dt w ' dt w ' 
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where 
F = Ax- hx -1x3 + 2px3 cos 2wt + rcos(wt- 6). 

The equations (1.3) belong to the standard form, for which the asymptotic method 
is applied [1]. Thus, in the first approximation we can replace the right hand sides 
of (1.3) by their averaged values in time. We have the following averaged equations: 

where 
fa = 2hwa + pa3 sin 21/.! + 2r sin( ,P + 6), 

go = aE + pa3 cos 21/1 + rcos(,P + 6), 
3 

E =A- -1a2
• 

4 

(1.4) 

(1.5) 

The stationary solution (ao, .Po) of the equations (1.4) are determined by 
. da d,P 

equat10ns dt = 0, dt = 0 or 

or equivalently 

7 0 = 2hwao + pa~ sin 21/Jo + 2r sin( .Po + 6) = 0, 

g0 = aaEo + pa~ cos 21/Jo + r cos( .Po+ 6) = 0, 

3 2 
Eo = A- 41a0 , 

!1 = f 0 cos,Po -g0 sin1/Jo 

= ~r sin 6 + i sin(21/Jo + 6) + 2hwa0 cos .Po + (pa~ - E 0 )a0 sin t/>o = 0, 

9! = f 0 sin t/>o + g0 cos tPo = 
3 r 

= 2r cos 6- 2 cos(2t/>o + 6) + 2hwa0 sin .Po + (pa~ + E 0 )a0 cos t/>o = 0. 

(1.6) 

(1.7) 

Below, for simplicity, we consider only the case 6 = 0. To eliminate cos2,P0 and 
sin 2t/>o from (1.6) and (1. 7), we use the combinations 

f _ ~-~ _ 3! _ h [ 4( 2 E ) 2] . ·'· -
2 0 pa0 1 - r wao - pa0 pa0 - 0 - r sm 'I'O 

- 2phwaci cos .Po = 0, 

r_ 3 r 3 3 4 . 
g = 2go + paogl = 2aoEo + 2rpa0 + 2phwa0 sm .Po 

(1.8) 

2 

+ [r
2 

+ pa6(pa~ +Eo)) cos tPo = 0. 
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fhe condition for equivalence of (1.6) and (1.8} is r2 f 4p2ag. As usual, equations 
[1.8) are considered as two linear algebraic equations relative to two unknowns u 
~nd v : u = sin tPo; v = cos tPo. The elimination of the phase tPo can be done by 
using the relationship u 2 ±JI2 ==_L_T}Yo_~;Me§n:mstbe identiii_e<i: 

1. The "ordinary" case when the determinant D of the coefficients of u and 
~ in (1.8) is different from zero, where 

4 T
2 

4 ( 2 ) D = 2phwa0 2 + pa0 pa0 + Eo 

pa6(Pa5 - Eo) - r2 2phwa6 
. 2 

D = 4p2 h2 w2 a~ + [r2
- pa6(pag- Eo)] [r

2 
+ pa6(pag +Eo)]. (1.9) 

2. The "critical" case when D = 0 

2. Resonance curves in system without damping 

Supposing that h = 0, the equations (1.6) become 

(pa~ cos tPo + r) sin tPo = 0, 

ao(Eo - pa6) + r cos tPo + 2pa~ cos2 tPo = 0. 
(2.1) 

From the equations (2.1) it follows 

a) tPo = 0 which corresponds to the resonance curve cf!l: 

Eo=-pa6- :
0 

or ~= C
4
"Y -p)a6- :

0
, aofO. (2.2) 

b) tPo = 1r which corresponds to the resonance curve c}2l: 

(
3 ) 2 r ~ = --y - p ao + - ' 
4 ao 

ao f 0. 

c) ~Po =±arc cos ( -:) which corresponds to the resonance curve C2: 
pao 

or ~ = (~"Y + p)a6- r24 
4 pa0 

with limitation: r 2 ~ p2a6. 

(2.3) 

(2.4) 

The curves C}1l, ci2l and C2 are presented in Fig.l, where the curve C2 is 
only the upper part of the curve (2.4) ended at point I(r 2 = p2 ag). The parameters 
for Fig. 1 are chosen so that 4p > "Y· 
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3. Resonance curves in the system with damping 

Solving the system (1.8) relative to sin .Po and cos .Po we obtain 

. DI D2 
sm,P0 = D, cos'I/Jo = D, 

D 1 = -~rhwa0 [r2 + 4pa~(E0 + 2pa~)], 

D2 = r~o { 4ph2w2aci +(Eo+ 3pa5) [paci(pa~- Eo)- r 2] }, (3.1) 

D = 4p2 h2w2a~ + [r2 
- paci(pa~- Eo)] [r: + paci(pa~ +Eo)], 

r =f. 2pa~. 

Eliminating the phase .Po from (3.1), we obtain the following equation of the 
resonance curve H 1 : 

W(b.,a~) = 0, (3.2) 

where 

(3.3) 

After simple, but rather long calculations, we can write (3.3) in the form 

(3.4) 

where 

(3.5) 
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2 10 - 2 2 6 . 3')' 2 a 0 = p a0 , a 1 - pr a0 , Eo = ~ - 4a0 , 

a2 = -2p4a64 + 8p2h2w2a6o + p2r2a~ + r4a~, 
aa =p6a6s =8p4h2w2a~~= 3r2p4a~2±16p2h4w4a6o 

(3.6) 

- 20p2r2 h 2w2ag + 3r4p2a~ + r4h 2w2a6- r 6
• 

:t is easy to verify that the determinant D is different from zero along the reso­
lance curve (3.2). Since r2 f 4p2a8 (equivalence condition of (1.6) and (1.8)) the 
Jquation (3.2) is equivalent to 

W(~,a~) = 0.- (3.7) 

The resonance curves have three branches and are presented in Figs 2-3 for 
~he parameters r = 0.01, p = 0.1, ')' = 0.25, andw 2 = 1.1. With increasing h, the 
upper branch 1 moves up and the two lower branches 2 and 3 are tied and then 
separated, as branches 4 and 5, see Fig. 2 for h = 0.01 and Fig. 3 for h = 0.027. 

~1 

0.60 0.60 

0.00 0.00 

~~-T=O 

-Q.10 0.10 -0.10 0.10 

Fig.2 Fig. 3 

4. Stability of stationary oscillations 

Setting in ( 1.4) a = ao + 8 a, 1/J = 1/Jo + 8 1/J and neglecting the terms with higher 
than one degree relative to 8 a, 8 1/J we have the following equations in variation: 

d8a = _ _!_ [(8/o) 8a + (8/o) 81/J] , 
dt 4w 8ao 81/Jo · 

ao d81/J = _ _!_ [ ( 8go) 8a + ( 8go) 81/J] , 
dt 2w 8a o 81/J o 

(4.1) 
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where the symbol ( )0 denotes that a= a0 , 1/; = 1/Jo. The characteristic equation 
of this system of equations is 

_...:_(8/o) _ >. 
4w . aa 0 

" (ago) 
2w aa 0 

c (8/o) 
4w a1j; a 

" (ago) -- - -ao>. 
2w 81/; a · . 

=0. (4.2) 

The first stability condition will be. 

8fo 8go 
S1 = ao Baa + 2 B1/;o = 4hwao > o. (4.3) 

The second stability condition is 

(4.4) 

From equations (1.8) 

f = G- pa~ cos 1/Jo) / 0 + (pag sin 1/;0 )g0 , 

( 3 . )- ( 3 r )-g = pa0 sm 1/Jo f 0 + pa0 cos 1/Jo + 2 g0 , 

and from / 0 = 0, g0 = 0, it follows: 

(4.5) 

The second stability condition (4.4) is equivalent to 

(4.6) 

According to (3.4) we have 
8
8

W = T
8
8

W along the resonance curve W - 0. 
. ao ao 

Therefore the condition (4.6) takes the form: 

aa8W 
S2 = D Baa> o. (4.7) 

2 

It is noted that since WI _
0
. = -r6 < 0, Dl _

0 
= !:.__ > 0 one can easily 

ao- ao- 2 
identify the regions of the (a0 , A)- plane where the functions Wand Dare positive 
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( +) and negative (-) and therefore know the stability branches of the resonance 
curves. In Figures 2 - 3 these branches are presented by heavy lines, while the 
instability branches are shown by dotted lines. 

5. Conclusion 

The interaction between cubic nonlinear parametric and forced oscillations 
in a system governed by the differential equation ( 1.1) has been investigated by 
the asymptotic method of nonlinear mechanics. The typical amplitude curves of 
stationary oscillations are presented in Figs 1-3. The amplitude curves in Fig 
1-2 are similar to that of the interaction between linear parametric and forced 
oscillations (see [1], Figs 94 and 98, page 275). The amplitude curves in Fig. 3 
characterize the nonlinear system under consideration. For small values of a0 the 
forced component is dominated and the corresponding parts of resonance curves 
are similar to those of forced oscillation. For large values of a0 the influence of the 
parametric component is clear, and as the result of the interaction between two 
oscillations, the resonance curve has the form of an upward parabola. 

The stability of the stationary oscillations obtained is studied by using the 
variational equations. The stability criterion in the form ( 4. 7) is convenient for 
geometric interpretation. The jump phenomenon takes place on some branches of 
the resonance curve. 

This work was financially supported by the Council for Natural Sciences of 
Vietnam. 
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TUONG TAC GitrA DAO DQNG CUONG BUC 
v A. THONG s6 PHI TUYEN 

S\f tlrO'Ilg tac eda eae dao d{ing phi tuy~n Ia m{it bai toan hay, quan trqng va 
da thu hUt sv ehU y ella nhillu nha nghi<ln ell-u. Minorsky N. da phat bi~u r~ng: 
"Toan b{i ly thuy~t dao dqng phi tuy~n e6 th~ duqe hlnh thanh dva tren ea sO. 
ella sv tuang tae". 

Sv tlrO'Ilg tae giii-a dao dqng etri'Yng brre va dao d{ing thOng sc5 "tuy~n tfnh" , 
khi h~ sc5 ella ham di~u hOa ella thCri gian Ia tuy~n tfnh dc5i v&i thOng so djnh vi 
da d1rqe nghien erru trong eae tai Ji~u [1] V~ [4]. Trang bai bao nay Xet S\f tuang 
tae giii-a dao dqng thOng so phi tuy~n b~e ba .v&i dao d(mg eu<mg bfre. Phuang 
phap ti~m e~n ella ca hqe phi tuy~n [1] da dU"qe str dvng d~ nghien erru eae dao 
d• d' ' " d"nh ' h' qng 1rng va S\f on 1 eua e ung. 

Cae dtrimg bien - t~ di~n hlnh ella dao d{ing dt'rng duqe bi~u di~n tren hlnh 
1-3. Cae duemg eong tren hlnh 1-2 e6 d~ng tlrO'Ilg tv nhu tmemg hgp tuang tae 
giira dao d{lng eu<mg bfre va thong so "tuy~n tinh" (xein [1], hlnh 94 va 98 trang 
275). Cae duemg e{lng hwng tren hlnh 3 rB:t d~e tr1rng eho h~ phi tuy~n khll.o 
sat. V&i eae gia trj ao nh6 thanh ph~ eu&ng bfre dong vai tro ap dll.o va ph~ 
duemg e{ing huO.ng tuang rrng e6 d~ng tuang t1f nhlr trong trlremg hgp dao dqng 
eU"Cmg brrc thu~ tuy. V&i nhii-ng gia trj l&n cda ao, anh huO.ng cda thanh ph~ 
thOng so kM ro. K~t qua ella S\f tlrO'Ilg tae giii-a hai dao d{lng k~ tren Ia duemg 
e{lng huO.ng c6 d<!-ng parabOn. 

sv 5n djnh eda eac dao d{ing dt'rng duqc nghien ell-u b~ng each str dvng 
phuang phap bi~n phan. Tieu chuan 5n djnh dwi d'l-flg (4.7) rB:t thu~n lqi cho 
vi~e phan djnh cae nMnh cln djnh. 

Hi~n tuqng nhay bien dq ciing xuB:t hi~n tren m{it so nhanh ella duemg c{lrig 
huO.ng. 
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