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ABSTRACT. Within the scope Gaussian equivalent linearization (GEL}, a2 new mean
square criterion based on Hermite polynomial error sample functions for determining the
coefficients of the equivalent linearization is proposed to linearize non-linear functions of
the zero mean Gaussian random process. Application to the Morison’s equation for wave
forces is presented that shows significant improvements over the corresponding accuracy
of the classical GEL.

1. Introduction

There has been a large amount of the extensive investigations into the re-
sponse of non-linear stochastic systems due to the fact that many excitations of
engineering interest are basically random in nature. Since all real engineering
systems are, more or less, non-linear, it is necessary to develop approximate tech-
niques to determine the response statistics of non-linear systemns under random
excitation. One of the known approximate fe¢hniques is the Gaussian equivalent
linearization (GEL) which was fist proposed by Caughey [1959] and has been de-
veloped by many authors, see e.g. [Atalik & Utku, 1976] [Casciati & Faravelli,
1986] {Anh & Schiehlen, 1997} [Roberts & Spanos, 1990]. It has been shown that
GEL is presently the simplest tool widely used for analysis of non-linear stochas-
tic problem, however, the major limitation of this method is seemingly that it’s
accuracy decreases as the non-linearity increases and it can lead to unacceptable
errors in the second moments. Further, if one needs more accurate approximate
solutions there is no way to obfain them using the conventional version of GEL.

To obtain a series of approximate solution in this excellent technique a mean
square criterion based on Hermite polynomial sample functions is proposed for
determining the coefficients of linearization. The criterion is based on the error
sample functions chosen in the form of Hermite polynomials. The proposed tech-
nique is then applied to Morison’s equation for wave forces. It is obtained that
the technique yields significant improvement over corresponding accuracy of the
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classical GEL.

2. Linearization of the-dragforce in-the Morison’s equation

Wave forces on structural members are usually computed by means of Mori-
son’s equation. For a rigid vertical circular cylinder, whose velocities an accelera~
tions may be considered to be negligible in the wave force calculation, wave force
normal to the per unit length is described by Morison’s equation [3, 4] :

1 1 ' :
F =Cplv|v+Cpmt = EpDCd[v]v + Zp'irchmtlv =F,+F, (2.1)

where v is the horizontal wave velocity component, ¢ is the horizontal component of
acceleration, D is the diameter of circular cylinder, Cy is the drag force coefficient,
Cy is the inertia force coefficient and p is the water density. The first term denotes
the drag, the second term specifies the inertia force.

When we assume that the wave motion is a Gaussian stationary process with
zero mean, the velocity v will be stationary Gaussian process too, with zero mean.

The drag force is'importa.nt in the case T < 0.01, where A being the wave

length [6]. _

In the Morison’s equation the drag force term is a nonlinear function of water
particle velocity components while the inertia force term is a linear function of
acceleration components. In order to overcome these difficulties the nonlinear
drag force term must be linearized. Thus, we replace

. .
F, = %pDCdlvlv 2 EpDquv. (2.2)

The problem reduces to the linearized drag force (2.2) where the coefficient of
linearization « is to be found from an optimal criterion. There are some criteria
for determining the coefficient 4. The most extensively used criterion is the mean
square error criterion which requires the mean square of error be minimum

(e*) — x:gn, ' (2.3)

where { ) denotes the expectation, and the replacement error ¢,is introduced

e = |vjv — . | (2.4)
Thus, from
a(fﬁ} =0
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it follows

_ (el 8 co6e
q= (vz) —'\/; » = 1.5960,, ; . : ;2.5)

: Where o, is the standard deviation of the process v.

So, the classical version of GEL, as described above “yields the coeﬂicmnt of
Iinearlzatlon ~ in (2.5). Rolfes and Dawson [10] carried out an experiment for
measurement of the wave force of random waves acting on a Jacket structure.
They observed that the linearized wave force based on the above mean square
error criterion was larger than the experimental result about 17%. Thus, one
question is open : how the welknown mean square error criterion can be extended
to improve the linearization of Morison’s equation.

3. Mean square criterion of error sample function

An alternative approach to the problem is following. Let F(e,az (%), as(v),

.., ak{7)) be an arbitrary function of the error ¢ and parameters a, () depending

on the coefficient of linearization v, (n = 2,3,4,...,k). The function Fj is called

error sample function. Now, the mean square error criterion (2.5) can be extended
to a mean square criterion of error sample function which requires that

M, = (F;f(e,az('y),ag(’y), e ,ak(q))) — min . (3.1)

V122,83 300030k

Thus, one gets

?’:’Jfk ai (Fi(e,a2(7), a3 (), ..., ax(7))) =
oM _ 0 (3.2)
oy %(Fﬁ(e,az(q) az(7),...,ac(v))) =

It is supposed that the error sample function is such that the system of (k — 1)
equations (3.2) allows to define k parameters a, as,...,ax as functions of response
mean square g, and v. Further, the latter can be definitely determined from (2.4)
and the last equation of (3.2). It seems that the extended version of the classical
mean square error criterion may contain many useful advantages. First of all, one
can get a series of approximate response mean square by choosing different error
sample functions Fg(e,a2(7v),aa(v),...,ax{y)). This property of the extended
criterion is very important from the point of view, of creating an approximate
technique to solve non-linear stochastic problems.

The problem of choosing optimal error sample functions is open and waiting
for it’s a solution. In the following section a Hermite polynomial form of error
sample functions will be proposed and investigated in detail for the Morison’s
equation.
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. Hermite polynomial error sample functions

Consider a case in which the error sample functions are Hermite polynomials

f error

Fi=e¢ Fo=e-) ali(e), k=23 (4 ~
1=2

vhere H »(€) stands for the Hermite polynomials

Hole) =1,

Hl(E) = €,

Hy(e) = €* —1, (4.2)
Hj(e) = €° — 3e,

which satisfy the differentiation law

d _
&Hn(e) =nHp_1(e) _ (4.3) -
and thg recurrence relation
Hpp1(e) = eHp(e) — nHpo—q(e). (44)

These polynomials are orthogonal on the interval (—oo, +oo) with respect to the
weght function W(R) = exp(—e?). Thus

f W (¢) Ho (€) Hom (€)de = 0

if m is not equal to n,
From (4:1) one gets

Fl=¢e —2eZa1H2,,_. (e) + ZZa,aJHg,_ (e) Haj-1(e)- (4.5) }

i=2 =2 7=2

The Hermite polynomials can be written as follows

-
=Y Hy e, (4.6)
j=0
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where
Hoo=H; =1,

Hiiy+1 = Hip1 4 +Hyj; 5=0,0 },; =1,n—-1 (4.7
Ht+l,3 = Hs+1 g iHi_l,j; j=0,i1—1,

Denote . H = [H;-,j] In particular when n = 7 one has

0

n € € € € € € € €
0 1
1 1
2 -1 1
H=3 -3 1
4 3 -6 1
5 15 -10 1
6 -15 45 -15 1
7 -105 105 =21 1
Thus, one gets
211
Haio( Z Hai1pe?,
k=0
2¢—-125—-1 (4'8)
H2:'—1( H2J 1 8) Z Z Hyi_ l,pH2_1 1pe(P+Q)
p=0 gq=0
k 21—1
(F2) = () =2 (@ Y Haicaplel®tD))
=2 p=0 .
2i—127—-1
+ ZZ (a,a, Z Z Hyi_1pHaj—1,p(e pﬂ))} (4.9)
i=2 j=2 p=0 ¢q=0
o(Fg) _ -
da; = 0. 7 _ (4.10)

Since the mean square (F2) is definitely positive, the system of linear equations
(4.10) gives a unique solution for unknown parameters a; in the form

a=A"'p (4.11)
A= 2Hy; 1 (e)Hsj-1(e) |
P: = 2eH2,-__1(e). (4.12)
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On the other hand, one gets from (2.4) the relation

(62”") =((|«u|v = 11:)2”,),; n=1,2,3, . (4.13)

which shows that error even moments (e?™) can be expressed in terms of o
! P »

2™ = (jv|v — yv)? Z Ci(—1) (lvfe) iy, (4.14)
Denote: ~

for even i: 1 =23

Zczn (lvh} 2n— 11}1"71 - ZC 27:.«--23,U2J,7

. e=0
n 3 B - .
= yi? Z Cﬁiv“”'?w” (4.16)
j=0
forodd:::=25+1
. a n—l L
Z C2n |Ul,u)2n—1,uz,,¥z - _ Z Céf:_l|’U|2n_(2]+1}’02n723+1
=0 . J‘~—Cl
—_— Z 02"}'1]1:!1)4”_23'“2723""1. (4.17)
Since.v is a Gaussian process one gets:
+oco
{lu|v?*) =2 f 'u”c+1 - exp (_vz)dv = (2k)o 2kt Ld (4.18)
202 e T’ '
0

T
) . 2
(") = (o*7) 3 CR (v~ Z 317 - 31 - e 2

7=0
- 2
= gin [ZC% an — 25 — )z — Z‘ CH*(4n — 25 - 2)!!m2f+1\/jJ,
7=0 "(4.19)
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where it is denoted
(2k+ 1)1 =1.3.5...(2k + 1),

(2k)1 = 2.4.6... (2K).

So, the function (F?) depends only on v and o,. It can be shown that now
" the furiction M can be expressed in the form - -

(4.20)

M, = (F3) = 04Nk(:r:) (4.21) |

where Ni(z) is a known polynormal of z.

- Denote by v, the corresponding solution obtained from the conditions (F?) —»
min. It might be expected that the approximate solution v; would approach to
the exact one, respectively, as one has clearly the following series of inequa,lities_

2
mln(e ) > ;{nln(Fz) > %:1111;2(17'3) -2 o R (F2). (4.22)
Thus, one can write the following numerical procedure for minimizing N(z):

1. Input data : k, zg, 21, s '

2. Computer matrix H by using (4. 6) for n = 2k

3. Enter loop covering all n, points = from g to z;

3.1. Computer matrix A and vector p by using (4.12)
3.2. Computer vector a by using {4.11)
3.3. Computer My and Ni(z) by using (4.9), (4.19}, {4.21)
3.4. Determine Min Nk(:c) and Zmin.
End loop.

5. First five approximate sclutions

The approximate solution vy is called k** approximate one. In this section

the equations used to determine the coefficient of linearization corresponding to
five first approximate solutions are derived in the explicit form. Obviously, the
_ first approximate solution ~; is identical to the one obtained from the classical
mean square error criterion since F; = e. First five approximate solutions for «;
are given in Tab.1, Whlle the corresponding graphics of Ni(z) are given in Figs

1-4.
Tab. 1. Five first approximate ~;

kt* Approximation i = Z—k Error(%)
1 1.596 17.0
2 1.482 8.6
3 1.442 5.7
4 1.402 2.8
5 1.381 1.2
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From calculations, we can do the following comparison: Suppose the first
approximation for the nonlinear drag force term in Morison’s equation, 0.55 DCyx

(1.5960,)v; is larger-than the experimental-result-about 17% as observed in- {10]. -~

Thus, one obtains that the fifth approximation, 0. 5pDCd(1 3810,)v, will be larger
than the experimental-result only 1.2%. .
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Fig. 1. Graphic of the function Nz(l‘) = a% ((6 —aqg H3 (e))2)
for the second approxima.ti‘én
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Fig. 2. Graphic of the function Ns(.’s) = E-l‘f((e —azH3 (8) - (1.3H5(e))2>
for the third approfima.tion
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Fig. 8. Graphic of the function N4(.‘I:) = E_l;((e -~ a2H3(e) — agzH; (e) - a4H7(e))2)
for the fourth ”approxima.tion
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Fig. 4. Graphic of the function
Ng(z) = ;%((e —agHs(e) — azHs(e) — asHr(e) — a5 Ho(e))?)
for the fifth approximation

Conclusions

The main question inherent in Gaussian linearization is how the coefficients
of the linearized equation are found. Instead of the well-known mean square error
criterion, a mean square criterion of error sample function based on Hermite poly-
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nomials has been proposed to linearize the drag force in the Morison’s equation.
An important property of this extended criierion is that it gives a possibility to
cbtain—a serfes-of approximation-including the conventional one as the first ap-
proximation. Further first five corresponding approximations are investigated in
detail. Application to the drag force in the Morison’s equation shows the reducing
the error between theoretical and experimental result from 17% to 1.2%.

This paper is completed with ﬁna.nc:al support of the Council for Natural
Sciences of Vietnam.
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TUYEN TiNH HOA TUONG DUONG LUC VAN TGC TRONG PHUONG TRINH
MORISON BANG DA THGC HERMITE CUA HAM PO LECH

Mot tiéu chuin binh phwong trung binh méi dwoc dé nghi trén co s sir dung
da thic Hermite cia ham 49 lech dé xdc dinh cdc hé s8 tuyén tinh héa twong
dwong ddi véi cde qua trinh ngau nhién Gauss véi trung binh bing 0. Ap dung

cho phwong trinh Morison d8i véi luc séng bién nhin dwoc ket qud t&t hon so véi

phwong phip tuyén tinh héa twong dwong kinh dién.
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