Vietnam Journal of Mechanics, NCNST of Vietnam T. XX, 1998, No 2 (11 - 17)

INTERACTION BETWEEN THE FORCED
AND PARAMETRIC EXCITATIONS WITH
DIFFERENT DEGREES OF SMALLNESS
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ABSTRACT. The nonlinear system under consideration in this paper has a specification
which can be stated as an interaction between the first order of smallness nonresonance
parametric excitation and the second order of smallness resonance forced excitation. In
the first approximation these excitations have no effect. However, they do interact one
with another in the second approximation.

The equations for the amplitude and phase of oscillation are found by means of the
asymptotic method. The stationary oscillations and their stability are of special interest.

1. The equation of motion and asymptotic solutions

Let us consider a nonlinear system governed by the differential equation
£+ w'z = eprcoswt + €2 [Az — 2h — Bz + rcos(wt — )], (1.1)

where

w?=1+¢e%A, | (1.2)
£ is a small dimensionless parameter, 1 is natural frequency, A is detuning pa-
rameter, p, h, § , 7, n, w are constants and overdots denote differentiation with
respect to time t.

We lock for the solution of the equation (1.1) in the form:

z = acosl +euy(a,v,0) +%uz{a,9,0) +..., (1.3)

where 8 = wt + ¢, u;(a,v,8) are periodic functions with period 27 with respect
to both angular variables ¢ and #, and ¢ and ¢ are functions of time which will
be determined from the equations:

%ZEAI(G1¢)+€2A2(aa1Ib)+;"s
b B SRR W)
“‘E":EBI(G,QD)-FEZBz(a,‘(‘D)—}-,, .
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these equations A;(e, ), B;i(a, ) are periodic functions of the angular variable
with period 2,

Substituting the expressions (1.3) and (1.4) into the equation (1.1) and com-

ring the coefficient of &' we obtain

2 _
~2wA; sinf — 2waB; cos § + w? (aa;;l + ul) = apcos(f — 1) cos §. (1.5)

ymparing the harmonics in (1.5) gives:

Al-_—Bl:O,

_ pa 1 _(1-6)
= o= [cos¢ 3 cos (28 ¢)]
Comparing the coefficients of €% in (1.1) we have
. 2 62"A"2
— 2wAqsinf — 2waBycosf +w ( ETE + U2) = pujycoswt + Aacosd
+ 2hwasin — Ba® cos® 8 + rcos(d — (¢ + n)}. (r.m)

Juating the coefficients of the first harmonics sin 6 and cos§ in (1.7) we obtain

pla ro
Az(a,¢) = —ha — ——sin2¢ — —sin(y + n),
A p* 38 P r .
B ’ = - . T Tha = o ) 2% — o ’
2(e,¥) 2% 12° 8w T 8wB v 2wa cos(¥ +7)
1.
Thus, in the second approximation one has:
- EP 1 - ] -
z—acosﬂ-l—%r2 [cos¢ 3cos(i?t? ¥)|, 8=uwt+1, (1.9)
here a and 1 satisfy the following differential equations:
d 2 2 _
KB [2hwa + P sin2g + rsin(y + n)],
I INE N
dt = 2w 6 4" 74 g s,

# 0.
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2. Stationary solutions

Denoting

2 . 2 N
- 2. (2.1)

C= LA W =P g ey T
C=A+F =3B, D=7, H=2h

we have the following equations for stationary values aq, ¥ satisfying the relations:

da dy
dt"“'"&"t""‘o1 .f""’g‘“”O: (2'2)
where
f = Hap + Dagsin 24 + rsin(yo + n), (2.3)
g = Cag + Dag cos 24 + 7 cos(tpo + 7). )
We transform equations (2.2) into two equivalent ones:
fcosypo — gsinyo = (D — C)agsinyg + Hagcos g + rsing = 0, (2.4)
fsinto + gcosypo = Hagsino + (D + Clagcostho + rcosn = 0. '
The condition for reality of sin o and cos ¢ is [2, 3}
a?[(D - C)? + H?] > r*sin®y, (2.5)
a2 [(D +C)? + H?] > r¥cos?n. (2.6)
a) Supposing that
M =D?— (H*+C% #0, (2.7)
we have from equations (2.4):
sin go = r[Hcosn —(D+C) sxnn]
(D% = (2 + e (2.8)
" r[Hsinn — (D - C) cos ) '
cos iy = :
° [D2 - (H? + C%)]ao
Eliminating 1o we obtain:
Wag,w) =0, (2.9)

‘Where
W = a3[D?— (H?+C?)]* ~r*[H?+ D*+ €2~ 2DC cos 2n— 2H Dsin 2q). (2.10)
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b) If
M=D*-(H*+C* =0, (2.11)

i.e. if the reso;iance curve takes-the form
C=xvD?-H?,

or

2

25 2
zﬂag Sy \/(%—) — 4k, F=A+ % , (2.12)

then by (2.8) one should have
Ny =Hcosn—(D+C)siny=0, Ny=Hsinn—(D—-C) cosn =0,
or equivalently,
Nicosy+ Nysinnp =0, N;sinn — Nocosn =0. |

These relations give:
H = Dsin2ny, C = Dcos2n.

Substituting these values into (2.5) and (2.6) we obtain the following restriction

to the amplitude ay: '

72

af > iz (2.13)

Note. As it will be seen later, the curve (2.11) serves as the boundary of the
stability zone.

3. System without friction
Now, let us consider a special case when & = 0 and the equations {2.4) have

the form:
(D = Clagsintg = —rsinyn,

(3.1)
(D + Clagcospg = ~rcosn.

a) If D~ C # 0and D+ C # 0, then the resonance curve C, is determined
by the equation of type (2.10) with H = 0:
W{w?,af) = 0, (3.2)

where o
Wiw?, a2) = a2(D* — C*? —+}(D? + C* - 2DCcos2n). = (3.3)
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In a particular case, when n = 0, 7 the resonance curve C; degenerates into
1} The curve C{ : D = C (double)

2} The curve Cf’: aD(D+C’] —ri=0.

- When 5 = g— 3? the resonance curve Cy degenerates into

3) The curve C§: D = —C (double)
4) The curve C$: al(D—-C)* —#? =0.
b) ¥ D — C = 0 (the resonance curve C3}, then from (3.1) we have
O.agsiny = —rsiny = sing =0 = 7 = 0,7,
2
ZDag) = aé = 4D%

2Dagcosyg = —rcosn = Er = iy = arccos( +

¢) If D + C = 0 (the resonance curve Cz), then from (3.1) we have
Q.agcostpy = —rcosnp = cosy =0=n = ?,
2

T
fu -SRI
zDao> a5 = 4D?

i
2°
2Dapsinyg = —rsinn = £r =+ g = arcsm(

4. Stability of stationary oscillations

With the notation (2.1) the equations (1.1G) can be written in the form:

da g2 : i
dt:_%[Ha—i—Dasti/)-i—TSlIi(lP—i-TI)]’ : (4.1)
‘ 4.1
2
ffi"f _%[CE+DGCOS2¢+TCOS(‘/’+’7)]

To study the stdbility of stationary oscillations with amplitude ay and phase ¥
determined from equations {2.2} or (2.4) we introduce the variations:

Substituting these values into {4.1) we cbtain

2
% ;w {(H + Dsin2t¢g)a + [2Da0 cos 24 + 7 cos(Po + )] ﬂb} . (4.2)
pd ) ~
ao% = ;w {(C’ + C’'ag + D cos 21,00)65 - [ZDag sin 24 + rsin{vo + n)]@b},
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' 3
where C' = ——z-ﬁao.
The characteristic equation for last two-equations.is . .

4

P S S 4.3

o 2w 4w 7 ‘ (4.3)
where X is characteristic numbers,

H, = ao [H —~ Dsin2vg — rsin(¥o + n)] = 4hwagy > 0, (4.4)

§ = (H + Dsin 24)[2Dao sin 240 + rsin(yo + 1)) (4.5)

+ (C + C'ag + D cos 24} [2Dag cos 29 + 7 cos(g + 1)] .

The expression for S can be written as
S = ao(D? — H? — C? - aoCC") + a3C'D cos 2¢. (4.8)

From (2.2) and (2.3) it follows:

Dag cos 2o = —Cag — r(cosipg cosn — sin Yo sing).

* Substituting here the expressions cos ¢y and sint)q from (2.8) we-obtain-

r?

ao(D? — H? — CF)

- Dagcos2yo = —Cag — (C — Dcos2n).

Thus, we have

2(D? — H? ~ C%)S = 2a0(D? - H? - CH? — 4a2CC'(D? - H - C?)

—-2r2CC! + 2r:DC' cos 2n = ow s
dag
1 ow :
S . 2 _ g2 _ 2 ) T
5= S HTEITCT e (D*-H*-C*%#0 | (4.7)

- Thus, the stability condition of the stationary solutions ag and g takes the
form ‘ :

oW
Mé—a'"‘; >0, (48)

M=H*+C?- D%, | (4.9)

The resonance curve "(W = 0) divides the plane (ag,w) into regions, in each of
which the expression W has a definite sign (+ or —). If moving up along the
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straight line parallel to the axis ag, we pass from a region W < 0 to aregion W > 0,
then at the point of intersection between the straight line and the resonance curve
the derivative 0W /3ao is positive. So, this point corresponds to a stable state
of oscillation if M > 0 and to an unstable one if M < 0. On the contrary, if
we pass from a region W > 0 to a region W < 0, then the point of intersection
corresponding to a stable state of oscillation if M < 0 and to an unstable one if
M > 0.
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TUONG TAC GITA CAC KiCH PONG THONG SO VA cUSNG BUC
CO BAC BE KHAC NHAU

Sy twong tic gitra kich déng théng s khéng cong hwdng cé d6 bé bic mébt
véi kich déng cudmg birc cong hudng ¢é d6 bé bic hai di dwoc khdo sdt. O xfp
x1 th& nhét cdc kich déng ndy khéng giy ra hiéu qud. Song ching twong tic 1in
nhau trong xép xl thir hai. Céc dao ddng dirng va sy 6n dinh cla chting da dwoe
dic biét quan tim nghién ctru.
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