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 DETERMINATION OF REACTION FORCES
AT KINEMATICAL JOINTS

DO SANEH
Hanoi University of Technology, Hanot

ABSTRACT. The determination of reaction forces at kinematical joints of mechanism
plays an important role in dynamics of machines. In the paper a method of determining
the reaction at kinematical joints is presented.

It is established a set of equations that are divided into two groups. The one describes
the motion of the system and the other allows to calculate the reaction at kimematical
joints. :

1. Introduction

The determination of reaction forces at kinematical joints has investigated
in many works. In engineering the D’Alembert’s method is usually applied for
calculating the reaction forces at kinematical joints. However, such a method
depends on each concrete structure of mechanisms.

There was an idea of making a general method for the problem. That is
to apply the method of analytical mechanics for determining reaction forces at
kinematical joints of a chain of links [7]. However, such method hasn’t yet taken
clearness and simplicity from engineering point of view.

2. Equations of motion of a constrained mechanical systém

Let us consider a holonomic mechanical system of n degrees of freedom. De-
note generalized coordinates of the systemn under consideration by ¢; ( = 1,n).

Assume that the matrix of inertia of the system is denoted by A, which is an
n X n positive define symmetric matrix. The elements of the matrix A depend on
generalized coordinates, i.e. A = A(q); where q is an n x 1 matrix of generalized
coordinates, that is:

qa" =lla1 92 g5 .- Gnlls (2.1)

the notation T denotes a transpose of matrix,
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Suppose that the expression of kinetic energy of the system is written in the
form:

T= 4"AG, (22)

where ¢ is an n X 1 matrix of generalized velocities, ¢ is the transpose of the matrix
of q, i.e.: | : ' )
q" = ||¢1 42 ds- - dull- (2.3)

Denote the generalized forces of applied ones by Q:(t,¢,¢) and Q is their
matrix notation, that is: -

QT =|Q1 Q2 Qs ... Qnl. (2.4)

Suppose that the system under consideration is subjected to constraints of
the form:
fa(t,91:92,93:-..,qn) =0; a=1,r. (2.5)

Basing on the principle of compatibility [2-5] the motion of a constrained
system must be written in the form:

A§d=Q+G+R, (2.6)

where G is an n X 1 matrix, which consists of the elements of the matrix of inertia
A, but R is the reaction matrix which must satisfy the condition of ideality of the
constraints (2.5). As known [3-5] this condition is

DR =0, | | (2.7)

where D is (n — r} X n matrix, its elements are just coefficients in expressions of
generalized accelerations written in the terms of independent generalized acceler-
ations by solving the constraint equations (2.5).

By means of the equations (2.6} and {2.7) it is possible to obtain a set of equa-
tions, that are divided into two groups, one of these group describes motion of the
system under consideration and the other group gives the reactions of constraints.

3. Algorithm for-ca]culating reactions at kinematical joints

To determine the reactions at the kinematical joint let us release just that
joint. The action of the released joint on the system is replaced by the reaction
forces. In other words, the freed system is then assumed to be that without
constraints under actions of applied and reaction forces.
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Because of releasing constraints, the number of degrees of freedom of the freed
system is bigger than the original system. :

Adapting to this let us introduce r new coordinates denoted by gn+1,qn+2:- -+,
@n+r- The number of new coordinates is-equal to the increased number of degrees of

' freedom. In order that the motion of the freed system is identical to the original

system, it is necessary to add some conditions. Such conditions play the role
of constraints. The reactions of these constraints are just the reactions of the
remarked joints.

Example. As an illustration let us consider a hammer crush machine shown in
Fig.1. The drum is a homogeneous disk of radius R and moment of inertia I;
about the rotation axis O.

There is a couple of force M acting on the drum. The physical pendulum has
the mass m and the moment of inertia I about its center of mass C; (AC; = a).
The physical pendulum is hung up against the disk at the joint A. Defermine the
reaction forces at the articulated joint A and write the equations of motion of the
hammer crush machine.

Consider the hammer crush machine as a system of two degrees of freedom.
Let choose generalized coordinates as ¢ and 8 - the angle coordinates of the disk
and physical pendulum respectively. These angles are formed by OA and AC,
with verticals. The system of hammer crush machine under consideration is called
the original system. To calculate the reactions at joint A let release the physical
pendulum from the drum (see Fig. 2).

Fig. 1 : Fig. 2

The freed system has 4 degrees of freedom. Let us choose generalized coordi-
nates of this system as ¢, 8, u, v, where p, 6 have the same meaning as above, but
u, v are rectangular coordinates of the joint A located on the physical pendulum.
In order that the motion of the freed system is identical to the original system it
is necessary to use the following conditions

w— Rcosp =0, v-— Rsing =0, (31
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These conditions are treated as constraints imposed on the freed system.

By putting:
: c=u—Rcosp, &=v-—Rsinp, (3.2)

‘we have - o ] 7
uwu=0c+Rcosp, v=¢-+ Rsing. (3.3)

‘Instead of u, v, we use the variables ¢, £. Equations of constraints (3.1) are

now:
o=0; ¢=0. : (3.4) -

The matrix of inertia of the freed system is

| I maR coso(cp —8) —mRsing mRcosyp
__{|maRcos(p — 6) I3 —masiné m
A= —mRsingp —masin @ m 0 (3.5)
mRcosyp ma cos f 0 m
where ' :
I? = I, + mR% I§=I2+ma2 (3.6)

- Notice that the 2 x 2 first matrix Ay on the principal dla.gona,l of the matrix
A is the matrix of inertia of the original system:

I? maRcos (o —8) “

maR cos(p — 0) (3.7)

Ag =

In accordance with the constraints (3.4} the matrix D in (2.7) isa2x4
matrix, which has the form:

1 6 0 0O
p-|5 1 ¢ o @9
The matrix G in (2.6} will be now:
—mRasin(p — )62
mRasin(p — §)? .
G = . 3.9
mR cos pp? -+ ma cos 0?2 (3:9)
mRsin pp? + ma sin 06
The matrix of applied forces is of fhe form:
M — mgsingp .
|l ~mgasiné
Q= mg (3.10)
0
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The condition of ideality of the constraints by (2.7) is written as follows:

Ry
DR F U 4 R U
) i " Re R
From here we oBta.in:
R,=0, Ry=0. | (3.12)
Therefore we can write
RT=]0 0 R, R:|. (3.13)
Because of (3.4} we have
c=0, ¢£¢=0, =0 £¢=0, =0, ,E:o.. (3.14)

Thus the matrix § will take the following form:

qg"=|l¢ 4 o of. (3.15)
Equation (2.6) is now:
I maRcos(p —0) —mRsing mRcosp|| || §
maR cos{p — §) 2 —masin ¢ m g _
—mRsinp —masin @ m 0 o
|  mRcosp macosf . 0 m 0
M — mgRsinp — Rasin(p — 6)4? 0
—mgasing + m}.Zg sin(yp - 9)@: 4 0 (3.16)
mg + mR cos g + macos 66 R,

mRsinpd? + masin 082 - R
The matrix equation (3.16) can be written in the form of two matrix equations:
" I maR cos(p — 0) ” ’

el
maR cos{p — 6) I f ”

_ || M —mgRsinp — maRsin(p — 6)62
—mga siné + maR sin(p — 0)95'2

(3.17)
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and
o
3

R
B

_ll—=mRsinp -—-masinf .
T || mRcosy  macosd mRsin ¢+ masin g §°

‘ H(p“ _ ‘1mg+chosqo 2 + macosf §2

(3.18)

Equations (3.17) describe the motion of the original system - the hammer
-crush machine, but the reactions at the joint A are drawn from the equations
(3.18). By such a way we obtain two groups of equations. The one describes the
motion of the original system, the other gives the reactions at the mentioned joint.

Notice that (3.9) and (3.10) can be written in the form:

Go | Qo
“= mRcosp p? + macosd éz » Q= mg |’ (3.19)
mRsinp $? + masing §° 0

where G and Q, are the 2 x 1 matrices

mRa sin(p — §)62

L2

mRacos(p — ) (3.20)

Gc]:’

_ || M — mgrsing

» Qo= ‘ mgasin @ “ '

It is easy to see that Geg is just the matrix G of the original 5ystem, but Qg

is the matrix of applied forces acting on the original system. In other words, the

matrices Gg and Qg are calculated for the original system, while G and Q are
calculated for the freed system.

By such a way, the equation (3.17) can be written as follows:
Ag Qo =Go+Qo, - (3.21)
where o is an n x 1 matrix of generalized accelerations of the original systerm, i.e.

&% = 15 di. (3.22)

Notice that Ag is the n X n matrix, which is made from n first rows and
columns of the matrix A. In other words, Ay is at the first left corner and on
principal diagonal of the matrix A.

We construct now an r x n matrix denoted by B. This matrix is made from r
last rows and n first columns of the matrix A. In the above example, the matrix

B is of the form:
—mRsiny —masiné

B = “ mRcose  macosf

. (3.23)
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Next we introduce the r x 1 matrices, G, and Q,, that are made from last r
rows of the matrices G and Q respectively.

In accordance with the above exé,mple we have:

' chosptp +mac050 g2 _Ilmg 3 94 '
G1= ‘ mRsing o + masind 62 1 0|’ (3.24)

Besides we denote: :
Ry = [[Rs Rel. (3.25)

Notice that the n x 1 matrix Ry is made from a last rows of the matrix of
reactions R. Equations (3.18) can be written then:

R1 =B ﬁo - Gl et Ql- | (3.26)

By such a way we obtain two groups of equations, the equation (3.21} with-
out reactions describes the motion of the system, but equations {3.26} gwes the
reaction at the joint under consideration.

Because of positive definiteness of Ag, there is the inverse matrix A;'. Thus,

from (3.21) we have
do = A5 (Go + Qo). (3.27)

Substituting (3.21) into (3.26) we can calculate the reactions at the joint, that
is
R; =B A;Y(Gp + Qo) - G, - Q. (3.28)

It is important that the reactions calculated by means of (3.28), don’t contain
accelerations. Go bask to the above example. It is easy to calculate the inverse of
matrix Ag:

-1 _ I3 —maR cos(p — §) .
Ao” = “ —maR cos(p — 0} e ’ (3.29)
where
A =II0 ~ m2a®R? cos? (0 ~ ). (3.30)
Therefore
BA;l =1y 3.31
°© A (3.31)

mR[ma?sinfcos{f — ) — ITsinp] ma[mR?sinpcos(d ~ p) — I¥sin 8]

mR (I3 cos p — ma® cosfcos(0 — )] ma[l] cosd — mR? cos pcos(d — )]
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We have then
|2
| e |

mR[ma?sinfcos(§ — p) — Ifsinp] ma[mR?sinpcos(d — ) — I sin 4]

mR[IZ cos p — ma®cosBcos(f — )] ma[l] cosd — mR? cospcos(d — )]

mR cos p $? + macos§ 8 + mg
mRsing $? + masind §2

M — ng.sintp
mga cos

(3.5

d

It is easily to see that R;, R. are just vertical and horizontal components of
the reaction at the kinematical joint A, respectively. -

4, Conclusions

By means of equations (3.28) the reactions are determined independently
to. establishment of equations of motion. Of course, to do this it is necessary
to calculate the inverse matrix of inertia as in the case of applying directly the
principle of compatibility [2-5]. However, it is important that the dimension of
the matrix of inertia of the original system is smaller than the freed system. This
reduces remarkably the calculations.

The equations obtained are written in matrix forms. This is very appropriate
for programming by means of PC, especially, for using symbolic method. This
publication is completed with the financial support from the Council for Natural
Science of Vietnam.
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XAC DINH CAC PHAN LUC TAI CAC KHOP PONG

Viée xac dinh cdc phidn luc tai céc khép déng clia co cfu cé vai trd quan
trong trong bai todn ddng lyc hoc cia may va co cau.

Trong bai bdo dwa ra mét phwong phép tién loi cho viée xdc dinh cidc phin
lwc khép d6ng. DA thanh 1ip hai nhéom phuong trinh: mét nhém cho phép xic
dinh chuyén ddng cia co cdu (phwong trinh chuyén déng), con mét nhém cho
phép tinh todn cdc phan lyc tai cdc khép dong.
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