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ABSTRACT. The classical 3D beam element has been modified and developed as a
new finite element for vibration analysis of frame structures with flexible connections
and cracked members. The mass and stiffness matrices of the modified elements are
established basing on a new form of shape functions, which are obtained in investigating a
beam with flexible supports and crack modeled through equivalent springs. These shape
functions remain the cubic polynomial form and contain flexible connection (or crack)
parameters. They do not change standard procedure of the finite element method (FEM).
Therefore, the presented method is easy for engineers in application and allows to analyze
eigen-parameters of structures as functions of the connection (or crack) parameters. The
proposed approach has been applied to calculate natural frequencies and mode shape of
typical frame structures in presented examples.

1. Introduction

The frame structures with semi-rigid (or flexible) connection have been stud-
ied in series of papers by Lui and Chen [2-4], Shi and Atluri [5], Kawashima and
Fujimoto {6]. However, the methods proposed in their studies are limited either
by the application for only some individual cases or by the difficulty for engineers
in application. Chan and Ho [7] have suggested a new approach for calculating the
mass and stiffness matrices of element basing on specific shape functions derived
from solving the equilibrium equations of bearn. The advantage of the method is
keeping the cubic form (but with coefficients depending on connection parameters)
of shape functions and the same as well known procedure of FEM. Some analytical
aspects of the dynamic problem for beam-column with flexible supports have been
investigated by Pedersen in [8].

Very few papers were contributed to develop the FEM for analysis of frame
structures with cracked members. Most of researches in this field are limited to
a description of crack nature rather investigating the influence of crack on the
behaviour of structures especially dynamical, because of the complexity of the
nature of crack. There is a simple approach [9-11, etc.|, that regards to changes in
the geometric properties of member due to crack. Most of them were completed
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by either classical FEM or analytical one and concerned only to simple structures
such as beam column {12, 13].

The present study is addressed to the development of FEM in free vibration
analysis of frame structures with flexible connections and cracked members. The
basis of this investigation is the idea of using modified appropriate shape functions
describing the flexible connection-and crack of beam, which will be modeled below
by equivalent springs. The spring parameters will be introduced so that their triv-
ial (zero) values correspond to the classical model of beam. In this context, these
parameters are called damage one and structure with such members is understood
as damaged. Therefore undamaged structure is identical to the classical model of
the structure.

The main subject of this study is to construct the shape functions depending
on the damage parameters. Then the consistent mass and stiffness matrices will
be calculated by formulas as well known in FEM. Subsequent procedure is followed
the classical case in FEM.

Proposed approach is applied to calculate natural frequencies and modes of
beam and frame structure in examples. Results obtained were compared with
known one and give accepted agreement. As mentioned in {5], the suggested
method is also efficient, relatively simple and can easily be accepted by engineers
in practice.

2. Beam Element - General Equation

The beam finite element well known in FEM is described by 12 DOF called
nodal displacements or generalized co-ordinates in the local system:

U;T = (Uf,...,Ufz) = (ul,ul,wl,ﬂl,wi,v;,uz,vg,ﬂg,w;,v;). (2.1)

After the nodal displacements have been defined, it is important to express
displacements u(z), v(z), w(z), #(z) at section z in term of the nodal ones:

u(z) = pr(z}uy + pr{z)ue,
0(x} = pa(z)0: + p10(z)f2,
, , (2.2)
v(z) = pa(z)v1 + po(z)v] + pa(r)vs + p12(z)vs,
w(z) = p3(z)w; + ps(z)w] + po(z)wy + py1(z)ws.
The selected so-called shape functions p;(z), j = 1,...,12, form the shape matrix
pr 0O O O © 0 pr 0 O 0 0 0
6 0 0 pg 0 0 O O O po O O
H{z) = 2.3
(=) 0 p2 0 0 0 pg 0 pg 0O 0O 0 py2 ( )

G 0 p3 0 ps O 0O O pg O py; O
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In addition, following matrices are introduced

[m] = pFlxq, = |E] = diag{EF,GJ,,EJ,,EJ,}

~and |
), 0 0 0 0 0 o, 0 0 0 0 O
0 0 0 p4b 0 0 0 0 0 gy O O
HE= =10 o 0 0 0 o 0 o 0 0o oy | @4

G 0
0 0 o5 0 pf O 0 0 pg O pf; O
p} = dp; /dz, p;-’ = d?p;/dz?, the mass and stiffness matrices of the beam element

can be calculated by formulas

L
M, —-:/HT(J:)[m]H(x)dx

L
/ z)[E|H(x)dz. (2.5)

Index e at Af, K shows that the matrices are in local system of co-ordinates.

Thus, the formulation of a beam finite element now leads to the choice of the
shape functions p;(z), j = 1,...,12. In the classical case of beam element, these
functions are taken in the form of Hermitian ones:

pi(e) = palz) = () =1~ 5,
pr(z) = prolz) = p3(z) =  ,
pa(z) = ~palz) = p§() =1 - 375 + 235,
r\3 (2.6)
pse) = pelz) = p3(e) = =(1-7)
po(z) = —po(x) = () =35 — 22,

2
x
T} = et = —1 — = ]_) .
pua(e) = p1a(e) = §(@) = = (3
These functions are the solutions of equations, describing the end conditions

1. u"(z) =0, u(0)=wu;, u(L)=us,
2.0"(z) =0, 8(z)=20,, 0O(L)=70,,

4
2. Lm0, w0 =w, VO =ut D) =w, VE)=u, O
4d4w($)_0 0 IO ,7 I) = ’L_ ,
. drt - iUJ() —wl’w()_wl’w()“"‘wz,W()-—uwz



This shows the essence of the finite element approximation. Developing this idea,
we will search the shape functions illustrating different cases of damaged beam.

3. Shapéu_f‘.u;l.ctionsfor Défhagéd Beam Element

As shown in previous-section,-the shape functions are the coefficients at the
nodal displacements in the representations of inside beam displacements deter-
mined from solving corresponding static problems with given nodal displacements.
Basing on this, in present section we will construct the shape functions in two cases
of damaged beam: flexible connection and cracked beam elements.

3.1. Flexible Connection Element

Let’s consider a beam specimen with given parameters: E, p, F, Jz, Jy, J»,
L, connected to the nodes I, J through 8 springs: axial k4, k9, torsional - v{, v
and rotational ¥, v¥, vf, vZ. Furthermore, the nodal displacements in (2.1) are
given, here the problem is to find functions p;, j = 1,...,12, appeared in (2.2)

a) Axial and Torsion Displacements {Fig. 1)

Wi W{x) Ly

The axial displacement u(z) of the bar can be found in the form u(z) = az+b
by satisfying conditions: '

EFv/'(0) + ky[u(0) - u1] =0, EFu'(L)+ ka[u(L) — uy] =0.
Hence, we obtained
Uy — Uz . ﬁ1uz+(L+ﬂ2)u1 EF

4= -, - ) i y = 1:2
L+ i+ ey
In accordance to (2.2), it will be yielded
pl(fE)=Gl(ﬁ1,ﬁ2)+bl(ﬁ1,62)$, (3 1)
p7(z) = az(f1,B2) -+ b2(B1, B2)x, .
where functions a;, b;, ¢ = 1,2 of two variables 7y, r; are:
L+r 1
ay(ry,r2) = D 2 » bifry,re) = D
- L . (3.2)
1
az(ry,m) = D’ ba(ri,ra) = D’ D=L+r; +rs.
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Similarly, for torsion displacement the shape functions p4(z), p10(z) can be written
a.s

pa(z) = a1(B1z, Baz) + b1(P1rz, B2z) T, (3.3)
, . _p10(z) = a2(B1ss P2z) + b2(B1z, B2z)z, ~ e e
Bz = GJy[VE, P2z = GJz/vF and a;, by, © = 1,2 are the same functions as defined
in (3.2). ‘

b) Flexural Deflections

For a beam given in Fig.2 the flexural deflection v{z) can be written as:

v(z) = co + c12 + €277 + ca2®, l\

w(a:) =do+diz+ d2$2 + daza,

which must satisfy conditions:

v(0) = vy, EJv"(0) — vi[v'(0) —vi] =0,
v(L) =v2,  EJ"(L)—vi[v'(L)—v}] =0,
w(0) = ~wy, EJuw’(0) - vf [w'(0) - w)] =0,
w(l) = ~wz, EJw"(L)- vi[w'(L) — wy] = 0.
The coefficients ¢y, d;, 1 = 0,1,2,3 have been found from the above conditions.

Then substituting them into the expressions of v(z), w(z) and comparing with
(2.2) we have '

pi(z) = ¢jo +cj1z + ¢joz® + ¢;32%, j=2,3,5,6,8,9,11,12 (3.4)
with the coefficients

c2i = 61i(B12:P22)s  cai = —1i(B1y,Bay), €50 = a2:(B1y, Pay)s
coi = ai(B12,822), €8 = a3:(B1z,P22), coi = —asi(Bry, Bay),
e11i = a4i(B1y, B2y) €120 = 04i(B12,B22), 1=0,1,2,3,
_ B, & |
ﬁiy = HVT" ﬂiz = U; sy =,1: 2.

functions a;;(ry,r2), 5 =1,2,3,4,i =0, 1,2, 3;'jare éi\keh}_in Table A.1:
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3.2. Cracked Beam Element -

Consider a beam cracked at a position @ € (0,L). Regarding to changes
in geometrical properties of the beam, the crack is assumed to be described by
springs: (axial k, torsional v, bending v, yz) connecting divided beam Spec1men5
in both sides of crack position. So, there will be 5 damage parameters o, 3 =
EF/k, B, = G, /v, By = EJy/Vy, B: = EJ,/v, and the shape functions pJ( )
will be found in the dependence on the damage parameters.

a} Axial and Torsional Model (Fig. 3)

W k | uz

o [

Fig. 3

Problem is to find displacement function u(z} of bar at any section z for given
nodal displacements u,, uz. Such function can be proposed to find in the form

{G;I‘!‘bl 0<z<a,
u(z) = : :
asT + by a<z<L,

satisfying conditions: u(0) = u;, u(L)=wu, and

P w/(a~0) + kula - 0) - u(a +0)
—EFu'(a+0) + klu(a +0) - u(a—0

]
)l

The coefficients a; and b; derived from these equations are

o Uz — U i Ug — Uy b Lul —}-ﬁ’UQ ﬂ EF
= hy = Uy, G2 = , = —— -
YT L+ MY T L4 2 L+p k
The function u{z) now has the form,
_ _ 0 < , _
u(r) = { F1 e i pim’ srea (3.5)
P UL T p7 Uz, a<z<L,

where

p1 (z) = ey (8) + by (B)z, p7 (z) = a5 (B) + by (B)z, (3.6)

2
pi(z) =] (8) + 07 (B)(z — L), p7(z) =az(B)+b](B)(z— L).
Functions a I;ui ¢ == 1,2 have the expressions given in Table A.1. -
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Similarly, we have

ps (x) = a7 (Bz) + b7 (Bz)z, p1o(Z) = a3 (Bz) + b7 (Bz)z, B: '_"GJZ/VM

pT(x) = af (B2) + b7 (B=)(z = L), pio(2) = a3 (B) + b5 (Bz)(z — L), - )
" with the same functions af:, bf:, 1=1,2, as in (3.6). The found functions do not
contain the crack position parameter o, they depend only on crack magnitude §.
In addition, if 8 = 0, then a?" = a7, b} =b; or pf(z) = p; (z) = p?(z).

t

b) Bending Model of Cracked Beam (Flg4)

’

T b |
Vi 1 ,
§j =epeere = R
1 & J

Fig. 4

In this case, the flexural deflections v(z) and w(z) are presented in the forms

( {vl +viz + ez +e2%, 0< 2 < a,
v(z) =
vy +vh(z— L) +ea(z— L) +ca(z— L), a<z<L,
—w; +wiz+dz? +daz®, 0<z <0,
w(:r:) = ! 2 3
—wy +wy{z ~ L} + d3(z — L}* +dy(z - L)°, a<z<L.
It’s evident that the functions v(z), w(z) satisfy boundary conditions
v({0) = vy, v(0)=vi, v(L)=vz, o' (L)=rv),
w(0) = —wy, w'(0)=w], w(l)=-w;, w'(l)=uwji.
In order to find ¢;, d;, 7 = 1,2, 3,4 there will be following compatibility conditions
at crack position a:
vla—0) =v(a+0), v"(a-0)=v"(a+0),
w{a—0) =w(a+0), w"{a-0)=w"{a+0),

From these equations we can get
, (I) B { C;Q + CJ-_II -+ c;ﬂ;? + cj'3;~;3, 0<z<aj= 2,3_,‘4,5,6,8,9, 11,12,
J - ~ . .. Ei -
C_T0+c;1(-’r—L)+cf2(r—L)2+c;?3(z-—L)~", a<z<lL -
‘ 38
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and

+ + + +
Ci: = aﬁ(“hﬁ:&:)s ¢5; = —al(ay, By), €5 = ay{ay,By),
o5 = agiles,Ba), o5 = agilenbz), = —ag(ay.By),  (3.9)

+ + .
cl:l;]."lf'm a’;ti(ai‘ﬂﬂy)’ chi :-a4i(az’ ﬁz)s

¢t =0,1,2,3. The functions'afj, 7=123,4,7=0,1,2,3 can be found in Table
Al :

Thus, shape functions for damaged beam elements have been found depending
on the damage parameters and all of them are listed in Table 1. It’s believed that
in any case, if damage magnitudes 8 equal zero the shape functions become to the

classical case given by (3.1), which correspond to undamaged beam. Using these
shape functions now we can go to the calculation of matrices M., K.

4. Calculation of Element Matrices

By the formulas (2.5) with given form of the matrices H, H, [m], [E], we may
write general form of mass and stiffness matrices as

A=
ras -
0 a2
0 0 azs
0 0 0 Q44 .
0 0 ass 0 ass SYMMETRICAL
0 adga 0 0 0 dsﬁ
a7y 0 0 1] 0 0 arz
0 ags 0 0 0 azge 0 adgg
0 0 Qga 0 dgs 0 0 0 (g9
0 0 0 210,4 0 0 0 0 0 210,10
0 0 ensz 0 ans 0O 0 0 ans 0  ai,mn
L 0 a2 O 0 0 a2 0 a2 O 0 0 a12,12
then
Ke = A{G,;J' = k,’j}, Me = pFA{a,;J- = m,;j}, (4.1)

where k;;, m;; could be calculated differently regarding to considered beam ele-
ment’s types.

4.1. Flex.ible Connection Element

Using function notations given in Appendix, the elements of mass and stiffness
matrices will be found as follows:
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mi; = h{1(ﬁ1u,ﬁ2u)
. Maq = hu(ﬁw,ﬁze):
mag = Fll(ﬂlz,ﬁzz
M3z = Flfl(
zﬂly,ﬂ?y)
23(ﬂ1y,ﬂ2y)s

mao = Fiy(B1z, B2z),

Mgz =

Mgs = —

TTigg — ng(ﬁlz:ﬁ2z)s
meo = Fiy (612, 82:),

ki1 = EFg],(B1u, B24),
kas = GJogl, (1o, Ba0),
kzy = EJ,S{1(B1z:B2s),

kg = Ejzsfs(ﬂlzaﬁzz),

kss = EJ Szfz( )

ke = EJ.S; ( )

kgs = EJ; 523(/6123622):
Eige = EJ.SL, (812, B22)
al )

( )

kijgo =

kSB - EJ S /6129622 y
kQQ - EI 333 ﬁlz1ﬁ2z ’

4.2, Cracked Beam Element

mr1 = hi;(Bru, Bau),
ma,10 = hiz(B1s, B20);
), mez = Fly(B12,822);
Bay), mss = —Fl5(81y.02),
mi1,3 = _‘"Ff{i(ﬁlyaﬂ:Zy)
My, = Fz{g(ﬂly:ﬁ2y)s
mMgs = szs (B1z,B22),
mazs = Ff(B12,022),

miie = — &(ﬂlzaﬂ2z):

k11 = EFgl,(Brus Bau)s
Gngfg (Bie, B2s),

mrr = hiy(B1us Bau)s

Mmig,10 = h{g(ﬂw,-ﬁze},—;--
- Mgy = F{a(ﬂ'lz'b Baz),
miz2 = Fff4(ﬁ1z,52z),
mss = Ffy(Bry, Bay);

miuiar = F:;{;(ﬁlyaﬁZy)a
mize = Ff,(B12,022),

miz12 = szi(ﬁlz’ﬁz;:)a

(4.2)

k77 = EFgl,(B1u, Bzu)
kio,10 = Gngéfz (Br6,B2s),

ksy = EJzSifz(ﬁlzsﬂzz):
kiz,2 = BJ.S{,(812, B22),
—E‘Iysgs(ﬁlyrﬁ%):
kivs = BJySL,(B1y, Bay),
ki1 = EJyS¢if4(ﬁlygﬁ2y);
kiz,12 = EJ.SL,(B1z, Baz),
= EJ.51,(B12,B22),
ki1,9 = '—E-Iz334(ﬂlz,5zz)-

kgs =

k12,8 =

Because of specific form of the shape functions in this case, we will employ
the function-notations specified in Appendix, hence, the M,, K, will be calculated

as

Mz = Flcl az,ﬂz); mez = Flcz(azsﬁz),
mag = Fi {0y, 8y), msz =
mog = Fia(ay,fy), mi1s =

mos = —Fya{ay, By),

my1 = hiz(auaﬁu):

m4,10 = hiz(ae,ﬂs),

“Flcz(ay:ﬁy),
_Ff:t(ayvﬁy)a

mi1,5 = Faqloy, By),

myr = hgg(ausﬂu):
mio,10 = h5y(cs, Be),

Mgz = F1c3(az,ﬂz):

Mmiz,2 = chl(azsﬁz):
mss = Fyp(ay, By),-
mi111 = Fig(ay, By),

(4.3)
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mes = Fyy(az, 82}, mas = Fyglas,82),  muze = Filas, 82),

mes = Fag{as, 82), mige = Fia:, B2}, mizie = Fias, 82),

mgg = Fis(@z,82), miie = —Fi ez 82),
kiy = EFgly (e, Bu)y  kn = EFgfz’(au',/S’u), kr7 = EFggz(au’ﬁu)s
ksa = G205 (2. 88), ka0 = GJogi,(20,86), kion0 = GJzg52(ay, Be),
k2o = B8] (0, 82),  ker = EJ.Sfy(0n,82),  kaa = EJ.STy(0. 8),
kss = EJ ST (0. 8,), kss=—EJ,Shy(cy,B,), k122 =EJ.SE,(0z8.),
kos = E.J Sla(ay, 8y), kia= “EJyS{é(ay,ﬁy): kss = Ejy32f2(0‘ysﬁy)a
kos = —EJy523(ayvﬁy)a ki1 = EJySzfz;(O‘y’ﬁy)’ ki = EJySL(ay,ﬁy),
kos = EJzS{Q(Qz,ﬁz)g kgs = EJzS;{g(az?ﬁz): k12,6 = EJzS{:;(“Z!ﬁZ)v
kss = EJ,Sf(az8:),  kizg = ELS{(az82),  kiznz = EJ.S{, (0 82),
koo = EJ,S4(cez, 2), ke = —EJ.8{(cz, B).

—

In formulas (4.2), (4.3) the following notations were introduced: oy, ag, oy, o,
- positions of crack related to axial, torsion and bending displacements and 3, =
EF[k, Bp = GJ,/vs, By = EJy/vy, B: = EJ;/v, are so-called crack magnitude
regarding to mentioned above displacements. This means that the modeled crack
related to each displacement may be different, it is easy to verify that crack position
does not influence on the axial and torsional behaviour of the element.

5. Numerical Examples

5.1. Flexible Connection

An example of a beam with two flexural spring at the ends has presented

(Fig.2). The parameters of the beam are as follows: L =10m, F = 2.1 x
10" N/m?*, F=78x10"*m?* J=84x10"%m™4, p = 7.84 x 10°kg/m®. The
results illustrated in Fig.5 present two first frequem:les and have received for two
cases of #; : 0.0 (continuous line) and 0.2 (dash line). The parameter 3, varies
on the interval [0.0,0.9999]. The lines illustrate the variance of frequencies versus
‘the 3 (The parameters §y, 8, have the same role in variance of the frequencies).
It can be seen from the results, that for different values A, the lines are shifting
down from the line #; = 0.0. The presented result is similar to that obtained in
[7]. A difference here is that there is taken into consideration the spring flexibility
instead of its stiffness.

5.2. Cracked Beam Element

In another example, a fixed-end beam with a flexural spring describing a crack
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at a position z is investigated. The parameters of the beam are as the same as the
beam described in the example 1. The frequencies, which are illustrated in Fig. 6,
have been computed for four different values of § = 0.0, 0.1, 1.0, 5.0. The graphics
presented in Fig.6 give the relationship between frequencies and the position of
crack. The results show good agreement with theoretical ones given in (14]. An
interest could be seen from the obtained result is that there are positions along
the beam at which crack does not influence on the frequencies. This fact is useful
for detecting crack position from measured natural frequencies.

f1 =g -2

180 4 ‘ 203

160

140 8,200 60 7 f4=0.0

120 400

100 \ By=02 8 350 ~ fes02

do | ¢ f ¥ * =7 360 + - + _@,Z
06 02 04 06 08 10 Q0 02 Q4 06 08 10

Fig. 5 '

u B=00 510 12

180 | _ K

160 i 4U0

140 410

120 360 4

Fig. 6

5.3. Damaged frame structure

There will be considered the steel frame that'was investigated in [7], see Fig. 7.
Thus, there is a plan frame structure {with height 7.3m, wide 6.1m) consisting of 6
nodes and 6 circular beam (¢ = 0.1 m) elements. Flexible connections of different
relative flexibility values will be introduced at the nodes connecting the columns
with the base and the horizontal braces with columns. Cracks are assumed in
the braces and colurnns at various positions. The flexible connection and crack
are investigated only in their bending model. The subject of this calculation is
change in the natural frequencies of the structure. The cases of damage proposed
for consideration are as follows:

Case A: Flexible connection of the same rotation flexibility (8) is introduced
simultaneously at the nodes connecting columns with base.

Case B: Flexible connection at both ends of the middle horizontal brace
(MHB) with columns. o
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Case C: Flexible connection at both ends of the top horizontal brace (THB)
with columns.

Case D: Crack appeared in the MHB at various positions (o) and with dif-
ferent values of magnitude {3). ' ' ‘

Case E:Crack appeared in the THB at various positions () and with different
values of magnitude (B).

Case F: Crack appeared in only one of the columns at various positions (a)
and with different values of magnitude ().

Case G: Crack appeared in the both columns at various positions (aq, oz)
and with different values of magnitide (8y, 52).

Results of computation, the first two natural frequencies corresponding to the
specified above cases are given in Table 1.

Analysis of the results leads to the following conclusions:

1. Damage, either flexible connection or crack in the bending model does not
changes the third natural frequency of the frame.

2. Reduction of the stiffness at the joint nodes (flexible connection):

- Weakening of connection of the structure with base can decrease maximum
the first frequency 40% and the second one 18%. Decrease of the both frequencies
versus weakness of the connection stiffness is almost monotonous.

- Flexible connection of the MHB with columns does not influences on the
second frequency, while change of the connection between THB and columns leads
to decrease of the both frequencies.

- The more distance of the flexible connection from the base is, the less its
influence on the natural frequencies.

3. Appearance of crack:

- Crack appeared at middle of the horizontal elements with any magnitude
does not changes the second frequency. Influence of the cracks appeared symmet-
rically in both sides of the middle is the same and this influence increases as the
crack goes far-away from the middle.

- If crack appeared in a column, the more closed to the base crack position is,
the more decrease of the first frequency and the less change in the second one. In
this case change in frequencies is not symmetrical as in the horizontal members,
minimal change of frequencies is recognised at the upper half of member,

- Simultaneously appeared at both columns cracks make more change in the
frequencies than that if crack is only in one column. Unequal of the distances of
the cracks in columns from the base inflects also to the change of frequencies. This
change i{s always less than that if cracks appeared at the least of distance from
base.

- In general, the more magnitude of crack, the more decrease of frequencies.
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Table 1

Case fB. 00 01 -02 04 06 08 10 20 40 oo

A 1freq. 1.76 169 162 151 142 136 1.30 1.15 1.06 1.00
2freq. 5.60 5.44 531 5.13 5.01 4.93 4.87 4,74 4.67 4.64

B ifreq. 1.76 1.71 1.66 1.58 1.52 1.47 1.44 1.34 127 -
2freq. 5.60 5.60 560 5.60 560' 5.60 560 5.60 560 -

C 1freq. 1.76 1.74 1.72 1.67 1.63 1.60 1.57 1.47 1.39 -
2freq. 5.60 5.50 542 5.26 5.24 505 4.97 4.75 461 -

A 0.1 1.0 2.0
a L/8 L/4 Lj2 3L/4 7L/8 L/8 L/4 L/2 L/8 LJ/4

D 1freq. 1.68 1.72 1.76 1.72 168 151 162 1.76 1.49 1.60
2freq. 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60

E 1freq. 1.73 1.75 1.76 1.75 1.73 1.62 1.69 1.76 1.61 1.68
2freq. 5.45 5.53 5.60 5.53 545 5.11 532 5.60 5.07 5.28

[ 0.1 1.0
o L/8 L/4 L/2 3L/4 7L/8 L/8 L/4 L/2 3L/4 7TL/8

F  1freq. 169 1.72 1.76 1.76 1.75 1.56 1.61 1.73 1.76 1.71
2freq. 5.47 5.54 560 552 543 5.25 540 5.60 5.24 4.99

B1=p2=20

ay L/8 L/2 3L/4
az L/8 L/4 L/2 3L/4 7L/8 L/8 L/4 L/2 TL/8 L/8

G 1freq. 1.18 1.28 149 150 141 149 155 1.68 1.66 1.50
2freq. 4.87 5.01 523 481 456 5.23 538 5.60 493 4.81

6. General Conclusion

Two cases of modified the beam finite element were developed to study frame
structures with flexible connections and cracked members. The flexible connec-
tion and crack have been modeled by different types of spring, relative flexibility
of which together with crack position serve as damage parameters. These ones
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take part into new form of the shape functions, consequently, the consistent mass
and stiffness matrices of the structure were constructed also as functions of the
damage parameters. Thus, by the same procedure of FEM there can be analyzed
behaviour of the frame structures in dependence on the appearance of damage.
The developed beam elements have been compiled with SAP IV and made the SAP
to get a new development, which can be employed to analysis of damaged frame
structures. Presented here numerical examples show the efficiency and applicable
of the development. The general result obtained in this study were applied to anal-
ysis and integrity assessment of the oil production offshore platforms operatmg in
Bach Ho field, Vietnam. -

This study was completed by financial supports from The National Program
for Natural scientific research and The Research Program of National Centre for
Natural Sciences and Technology of Vietnam.
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Fig. 7
APPENDIX- FUNCTION NOTATIONS

a. For flexible connection element

rl,rz a,, (r1,72) + zb; (T]_.,Tg)] [aj(rl,rg) + {Ebj(?'l,'l"z” dz

o\\ﬁ

= La;a; + L(alb + a;b )+ L%b,, i,7=1,2
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L 3
Pl = [ 3, o2 S btk
0 1,k k=1
[ . lrk__ . . -
bz_g =7 Z ti_a' 8_—p, 1,7 =1,2,3,4,
p=0

gf;'(n,rz) = bi(r1,72)b;(r1,72)L, 1,9 =1,2,
L
Sifj(rl, re) = j [20.1‘2(7'1,?'2) + 6a,;3r1,r2)z] [2{1_,-2(1'1,1'2) + ﬁajg(rl,rg)a:] dz
o
= 4La;pa52 +6L% (aigajs + aizasz) + 12L%a;3053, 1,7 =1,2,3,4.

b. For cracked element

1
h?}(rl,rg) = a;"a;'(rl - L)+ 5[
af = ai(r), b?: = b;(r),

1

1
a;"b;' —i—a}’bf] (ri — L)2 + gbj'b;'(rl — L)a,

1, o vg 1.

hij(r) = hi;(r) — R (r),

hii{ri,ra) =a;ja;ri+

F{?(?‘l,fz) =
'
k + *
Zbgk(rl’rz)rl’ ‘le & Za:p O kmt—pr Q5 = G5 (Tls T2)
_ ) k=1 p=0
- k 1
Zb;}k(fl,rz)(n - L)k, ;}k Zamaj k—f—p> 1,7 =1,2,3,4
\ k=1 P"’O
Ficj(rlar2) =F3(Tlir2) F,-;_(fl,fz)
b-'_(l"g)b-i-(fg)(fl — L)
gﬁ-(h,rz) = : f_ , 3,7 =1,2,
bi (Tz)bj (Tg)fl
gi(r1,ra) = g5;(r1,m2) — g (re,m2),
S{;(n, Te) = 4a$a}‘2 (rp— L)+ 6(a;;a;-'3 + aj{ia;-"z)(rl - L+ 12a;".'3a;-"3(r1 - L)®
S (ri,r2) = dajan,ry + 6(aja; + el + 12a505r) , 54 =1,2,3,4

S5(r1ura) = 55 (ru,ra) — 55 (r1,m2)
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Table A.1. Coefficients of Shape Functions

. Cracked
. Flexible '
Classic .
connection
0szsn <z < L
a0 1 1 ao 1 aty 0
a;; O 6&%‘%2’3) agy 0 a:r,‘li'1 0
13 %23 :3(&-%) a5 -3(1,‘*’;;%1 ra) o, 3[L? —21-20(1»1 ~L)]
a3 '5'23' D2 dez ags EUic’?). a-iz-a Eﬁi‘i'c_"-z)_
azx O 0 as; 0 aly 0
ay 1 Rl .n 1 ot 0
aaz '_L—2 :ﬂ%ifﬁr_z)_ Qg9 Z2(57 43 ‘*‘f"i r2) ag-z L® —snl:;i(n ~L}
azz 17 %f—? ag3 Llt2nr, Dz: T als Lit2ryra Dg: r
az0 O 0o Gz 0 aty 1
as; O Er—‘—%}i—gﬂ)— asy 0 a.g'l g
a32 'L% ﬂ%‘;—iﬁl a; (L A2ryrs) Lz'};ﬁ’ T2 a'3"2 —3{L2—ig':(r1—L)l
as3 i_f %_;2%% 0z, '_ngLDj-m} a'3’"3 —2§g;|—rg)
240 O 0 @40 0 a3 0
ay; 9O :%%ﬂ a4 0 "-"1—1 1
N A A
Q43 1.}—2 L%%z a4—3 Z!Lb-:rgl a:1|-3 L—-2r2D!:1—-L!

df =L+4r;+ry
D= L* +4L(ry + r3) + 12r3ry
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10.

11.

dc =L + 7.
Do = L{L* + 12ryra(ry ~ L) + 4L%ry)

pr=ay+biz, pa=az+bzx -
pj = Cjo + Cj1z + Cj12° + Cj12°, j=3,4,5,6

pi=a] +b;z, 0<z<ry, pi=af +b}(e—L), r1 <z <L, i=1,2

e - - .2 - .3
pj_ajo—i_a'jlz_'_ajlm +a-j2$ 3 OS$<T1,

pj=ak+afi(z— L) +afy(c - L) +af(z—L)?, n<z<L

i=23,4,5,6
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PHAN TiCH PONG KET CAU KHONG NGUYEN VEN
BANG PHUONG PHAP PHAN TU H{T'U HAN CAI BIEN

Phan ttr dim 8 dién da dwoc cdi bién vi phét trién d€ phan tich dao déng
cia mdt khung khéng gian véi cdc lién két meém vi cic phin td cb vét nit. Ma
tran dé cimmg va ma tran khéi luong dwoc thiét 1ip cho cac phin ti dim cdi bién
nay dwa trén ham dang méi, dwoe x4y dyng qua viéc mé hinh lién k&t mém va
vét ntt bdng céc 16 xo twong dwong. Him dang niy vin cé dang da thirc bic
ba va ¢6 chira cdc tham s8 cda lién két (cda vét nirt). Ching khéng 1am thay dai
quy trinh thuéng ding cda viéc mé hinh héa bing phwong phip PTHH. Do viy,
phwrong phéap dwa ra & diy dé dang 4p dung d€ phéan tich tham s8 trong bai todn
tri riéng cta céc két cdu theo cdc tham s8 cla lién két mém (hay vét nirt). Céch
ti€p cin ndy da dwoc 4p dung dé tinh céc gid tri riéng va dang riéng cda két ciu
khung cho mét sé vi du.
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