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ABSTRACT. The classical 3D beam element has been modified and developed as a 
new finite element for vibration analysis of frame structures with flexible connections 
and cracked mem hers. The mass and stiffness matrices of the modified elements are 
established basing on a new form of shape functions, which are obtained in investigating a 
beam with flexible supports and crack modeled through equivalent springs. These shape 
functions remain the cubic polynomial form and contain flexible connection (or crack) 
parameters. They do not change standard procedure of the finite element method (FEM). 
Therefore, the presented method is easy for engineers in application and allows to analyze 
eigen-parameters of structures as functions of the connection (or crack) parameters. The 
proposed approach has been applied to calculate natural frequencies and mode shape of 
typical frame structures in presented examples. 

1. Introduction 

The frame structures with semi-rigid (or flexible) connection have been stud­
ied in series of papers by Lui and Chen [2-4], Shi and Atluri [5], Kawashima and 
Fujimoto [6). However, the methods proposed in their studies are limited either 
by the application for only some individual cases or by the difficulty for engineers 
in application. Chan and Ho [7] have suggested a new approach for calculating the 
mass and stiffness matrices of element basing on specific shape functions derived 
from solving the equilibrium equations of beam. The advantage of the method is 
keeping the cubic form (but with coeffiCients depending on connection parameters) 
of shape functions and the same as well known procedure of FEM. Some analytical 
aspects of the dynamic problem for beam-column with flexible supports have been 
investigated by Pedersen in [8). 

Very few papers were contributed to develop the FEM for analysis of frame 
structures with cracked members. Most of researches in this field are limited to 
a description of crack nature rather investigating the influence of crack on the 
behaviour of structures especially dynamical, because of the complexity of the 
nature of crack. There is a simple approach [9-11, etc.], that regards to changes in 
the geometric properties of member due to crack. Most of them were completed 
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by either classical FEM or analytical one and concerned only to simple structures 
such as beam column [12, 13]. ' 

The present study is addressed to the development of FEM in free vibration 
analysis of frame structures with flexible connections and cracked members. The 
basis of this investigation is the idea of using modified appropriate shape functions 
describing-the-flexihle-cormectionand crack of beam, which will be modeled below 
by equivalent springs. The spring parameters will be introduced so that their triv­
ial (zero) values correspond to the classical model of beam. In this context, these 
parameters are called damage one and structure with such members is understood 
as damaged. Therefore undamaged structure is identical to the classical model of 
the structure. 

The main subject of this study is to construct the shape functions depending 
on the damage parameters. Then the consistent mass and stiffness matrices will 
be calculated by formulas as well known in FEM. Subsequent procedure is followed 
the classical case in FEM. 

Proposed approach is applied to calculate natural frequencies and modes of 
beam and frame structure in examples. Results obtained were compared with 
known one and give accepted agreement, As mentioned in [5], the suggested 
method is also efficient, relatively simple and can easily be accepted by engineers 
in practice. 

2. Beam Element - General Equation 

The beam finite element well known in FEM is described by 12 DOF called 
nodal displacements or generalized co-ordinates in the local system: 

u; = (Uf, ... ,Uf2) = (ui,VI,WI,IJI,W~,v~,U2,V2,(;12,W~,V~). (2.1) 

After the nodal displacements have been defined, it is important to express 
displacements u(x), v(x), w(x), IJ(x) at section x· in term of the nodal ones: 

u(x) =PI (x)ui + P7(x)u2, 

IJ(x) = P4(x)IJI + Pio(x)02, 

v(x) = P2(x)v1 + Pe(x)v; + Ps(x)v2 + P!2(x)v~, 
w(x) = P3(x)wi + Ps(x)w; + pg(x)w2 + Pu(x)w~. 

(2.2) 

The selected so-called shape functions Pj(x), j = 1, ... , 12, form the shape matrix 

(

PI 

H(x) = ~ 
0 
0 

P2 
0 

0 
0 
0 

Pa 

0 0 
P4 0 
0 0 
0 Ps 

0 
0 

Pe 
0 

P7 0 
0 0 
0 Ps 
0 0 
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0 
0 
0 

pg 

0 0 
Pw 0 
0 0 
0 Pll 

(2.3) 



In addition, following matrices are introduced 

[m] = pFI4x4, [EJ = diag{EF,GJx,EJz,EJy} 

and 

n 
0 0 0 0 0 p~ 0 0 0 0 

pi,) 0 0 p~ 0 0 0 0 0 I 0 
H(x) = P10 (2.4) 

p~ 0 0 0 p~ 0 p~ 0 0 0 
0 p~ 0 p~ 0 0 0 p~ 0 p" 11 

pj = dpi jdx, p~1 = d2 pjjdx2
, the mass and stiffness matrices of the beam element 

can be calculated by formulas · 

L 

Me= I HT(x)[m]H(x)dx, 

0 

L 

Ke =I HT (x)[E]H(x)dx. 

0 

(2.5) 

Index e at M, K shows that the matrices are in local system of co-ordinates. 

Thus, the formulation of a beam finite element now leads to the choice of the 
shape functions Pj(x), j = 1, ... , 12. In the classical case of beam element, these 
functions are taken in the form of Hermitian ones: 

These functions are the solutions of equations, describing the end conditions 

1. u"(x) = 0, 

2. O"(x) = 0, 

u(O) = ui, 

O(x) = OI, 

u(L) = u2, 
O(L) = 02, 

(2.6) 

3. d::sx) = 0, v(O) =vi, v1(0) = v~, v(L) = v2, v1(L) = v~, (2·7) 

d
4
w(x) ( ) 1( ) 1 ( ) 1( ) 1 4. dx4 = 0; w 0 =-WI, w 0 = wi, w L = -w2.' w L = w 2• 
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This shows the essence of the finite element approximation. Developing this idea, 
we will search the shape functions illustrating different cases of damaged beam. 

3. Shape Functions for Damaged Beam Element 

As shown in previous section, the shape functions are the coefficients at the 
nodal displacements in the representations of inside beam displacements deter­
mined from solving corresponding static problems with given nodal displacements. 
Basing on this, in present section we will construct the shape functions in two cases 
of damaged beam: flexible connection and cracked beam elements. 

3.1. Flexible Connection Element 

Let's consider a beam specimen with given parameters: E, p, F, Jx, Jy, Jz, 
L, connected to the nodes I, J through 8 springs: axial k1, k2 , torsional- 11]', v~ 
and rotational vi, v~, vf, v~. Furthermore, the nodal displacements in (2.1) are 
given, here the problem is to find functions Pi, j = 1, ... , 12, appeared in (2.2) 

a) Axial and Torsion Displacements (Fig.l) 

l.l(X) Uz 

kz 

X J 

Fig.1 

The axial displacement u(x) of the bar can be found in the form u(x) =ax+ b 
by satisfying conditions: 

EFu 1(0) + kl[u(O)- u 1] = 0, EFv.'(L) + k2 [u(L)- u 2] = 0. 

Hence, we obtained 

b _ fJ1 U2 + (L + .82Ju1 
- L + fJI + .82 ' 

EF 
,8; =-' 

k; 

In accordance to (2.2), it will be yielded 

PI(x) = ai(fJI,fJ2) + b1(.8I,fJ2)x, 

P7(x) = a2(fJI,fJ2) + b2(.8I,fJ2)x, 

where functions a;, b;, i = 1,2 of two variables r 1 , r2 are: 

L + T2 1 
a1 (r1 ,r2)= D , br(r!,r2)=-D',· 

i = 1,2. 

r1 1 
a2(r1,r2)= D' b2(r1 ,rz)=D' D=L+r1 +r2. 
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Similarly, for torsion displacement the shape functions P4(x), Pto(x) can be written 
as 

p4(x) = at(Pt.,,f32.,) + bt(Pb,f32.,)x, 

·Pto(x) = a2(f3t.,,f32.,) + b2(Pt.,,f32.,)x, 
(3.3) 

,131,. = GJ.,jv'j, {32., = GJ.,jv~ and a;, b;, i = 1, 2 are the same functions as defined 
in (3.2). 

b) Flexural Deflections 

For a beam given in Fig. 2 the flexural deflection v(x) can be written as: 

~ lv:zi ------- ~~(~------1-J:v~. 
I X J 

Fig. 2 

v(x) = c0 + c1x + c2x2 + c3x3
, 

w(x) =do+ dtx + d2x2 + d3 x3
, 

which must satisfy conditions: 

v(O) = Vt, 

v(L) = v2, 

w(O) = -Wt, 

w(L) = -w2, 

EJzv"(o) - vi[v'(o)- vU = 0, 

EJzv"(L)- vf [v'(L)- v~] = 0, 

EJyw"(o)- vi [w'(o)- w~] = o, 
EJyw"(L) - vl'[w'(L)- w~] = 0. 

The coefficients c;, d;, i = 0, 1, 2, 3 have been found from the above conditions. 
Then substituting them into the expressions of v(x), w(x) and comparing with 
(2.2) we have 

P;(x) = c;0 +c;tx+ c;2x2 + Cjax3
, j = 2,3,5,6,8,9,11,12 (3.4) 

with the co~fficients 

C2i = at;(f3tz,f32z), 

C6i = a2i (f3tz, f32z), 
cu; = a4;(f3ty,,l32y) 

ca; = -ati(Pty,,l32y), cs; = a2;(f3ty,,l32y), 

Csi = <;J.i(f3tz,f32z), Cg; = -aa;(,8ty,,l32y), 

Ct2i-· a4i(Ptz, f32z), i = 0, 1, 2, 3, 

i = 1,2. 

functions a;;(r1 , r 2 ), j = 1, 2, 3, 4, i = 0, 1, 2, 3.are giveit)I! TableA.L. 
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3.2. Cracked Beam Element 

Consider a beam cracked at a position a E (0, L). Regarding to changes 
in geometrical properties ofthe beam, the crack is assumed to be described by 
springs: (axial k, torsional llx. bending lly, vz), connecting divided beam specimens 
in both sides of crack position. So, there will be 5 damage parameters a, f3 == 
EFjk, f3x == GJx/llx, /3y == EJyjvy, f3z == EJz/llz and the shape functions Pj(x) 
will be found in the dependence on the damage parameters. 

a) Axial and Torsional Model (Fig. 3) 

Fig. 3 

Problem is to find displacement function u(x) of bar at any section x for given 
nodal displacements u 1 , u 2 • Such function can be proposed to find in the form 

0 :S: x < a, 

a < x :S: L, 

satisfying conditions: u(O) == UJ, u(L) == u2 and 

EF u'( a- 0) + k[u(a- 0) - u(a + 0)] == 0, 
-EFu'(a + 0) + k[u(a + 0)- u(a- 0)] == 0. 

The coefficients ai and bi derived from these equations are 

The function u(x) now has the form, 

where 

P!(x) == a!(6) + b!(f3)x, 

O:S:x<a, 
a < x :S: L, 

P7 (x) == a2 (f3) + b2 (f3)x, 

Pi(x) == ai{6) + bi(f3)(x- L), Pi(x) == at(f3) + bt(f3)(x- L). 

Functions at, bt, i '"" 1, 2 have the expressions given in Table A.l. · 
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Similarly, we have 

Pi(x) = ai""(/3x) + bi""(/3x)x, Pi""0 (x) = a2(/3x) + b2(/3x)x, f3x = GJxfvx, 

p;i(x) = ai(f3x) + bi{/3x)(x- L), Pio(x) = at(/3x) + bt(/3x)(x- L), · 
. . ... .. . . . (3.7) 

with the same functions at, bt, i = 1, 2, as in (3.6). The found functions do not 
contain the crack position parameter a, they depend only on crack magnitude /3. 
In addition, if /3 = 0, then at =a;, bt = bi or Pt(x) =Pi (x) = P?(x). 

b) Bending Model of Cracked Beam (Fig. 4) 

vJ ------- -i vL/--------- !v2v;_x 
VII I 

C( J 

Fig. 4 

In this case, the flexural deflections v(x) and w(x) are presented in the forms 

( _ { vi+vix+cix2+c2x3, O:Sx<a, 
v x)- v2 +v~(x-L)+c3(x-L) 2 +c4(x-L) 4 , a<x:SL, 

( )
-{-w!+wix+dlx2+d2x3, o::;x<a, 

W X - 2 3 
-w2 + wHx- L) + d3(x- L) + d4(x- L) , a< x :S L. 

It's evident that the functions v(x), w(x) satisfy boundary conditions 

v(O) = v 1 , v'(O) = v~, v(L) = v2, v'(L) = v~, 

w(O) = -w1, w'(O) = w;, w(L) = -w2, w'(L) = w~. 

In order to find ci, dj, j = 1, 2, 3, 4 there will be following compatibility conditions 
at crack position a: 

v(a- 0) = v(a + 0), 

w(a-0) =w(a+O), 

v"'(a- 0) = v111 (a + 0), 
w111(a- 0) = w"'(a + 0), 

EJzv"(a- 0) + Vz[v'(a- 0)- v'(a + o)] = 0, 
EJyw 11(a- 0) + Vy [w'(a- 0)- w'(a + 0)] = 0, 

EJzv"(a + 0) -v.[v'(a + 0)- v'(a- o)j = 0, 
EJyw"(a + 0) + Vy [w'(a + 0)- w'(a- o)] = 0. 

From these equations we can get 

. X_ { cjo+cj1x+cj2.x
2+cj3x3, O:Sx.<a, j=2,3,4,5,6,8,9,ll,12, 

PJ ( ) - + + ( ) + ( ) 2 + ( )3 · cj 0 +cj 1 x-L +cj2 x-L +cj3 x-L, a<x:SL 
(3.8) 
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and 
cg; = ai;(az,fJz), ci; = -ai;(ay,(Jy), c~ = ag;(ay,(Jy), 

c~ = ag;(az,fJz), c~ = ai;(az,fJz), c~ = -ai;(ay,(Jy), 

c~1; = a!(ay,(Jy), c~2; = a!(az,fJz), 

(3.9) 

i = 0, 1, 2, 3. The functions at, J = 1, 2, 3, 4, i = 0, 1, 2, 3 can be found in Table 
A.l. 

Thus, shape functions for damaged beam elements have been found depending 
on the damage parameters and all of them are listed in Table 1. It's believed that 
in any case, if damage magnitudes (J equal zero the shape functions become to the 
classical case given by (3.1), which correspond to undamaged beam. Using these 
shape functions now we can go to the calculation of matrices M., K •. 

4. Calculation of Element Matrices 

By the formulas (2.5) with given form of the matrices H, H, [m], [E], we may 
write general form of mass and stiffness matrices as 

A= 

au 
0 a22 
0 0 a a a 
0 0 0 a44 
0 0 as a 0 ass SYMMETRICAL 

0 ae2 0 0 0 aea 
an 0 0 0 0 0 a77 
0 as2 0 0 0 as a 0 ass 
0 0 a93 0 ags 0 0 0 agg 
0 0 0 a1o,4 0 0 0 0 0 a10,10 
0 0 a11,3 0 au,s 0 0 0 au,9 0 ar1,11 
0 a12,2 0 0 0 a12,6 0 a12,s 0 0 0 a12,12 

then 
K. = A{a;j = k;j}, M. =pFA{a;j =m;j}, (4.1) 

where k;j, m;j could be calculated differently regarding to considered beam ele- ~ 
ment's types. 

4.1. Flexible Connection Element 

Using function notations given in Appendix, the elements of mass and stiffness 
matrices will be found as follows: 
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mu = hL(f3Iu,f3z.,), m71 = h{2(f3!u,f32u), m77 = h{z(f3lu,f3z.,), 

m44 = h{1 (f3Je,f3ze), m4,10 = h{2 (f3u,f3ze), m10,10 = h{2(f3Je,f3ze},-­

m22 = F{1 (f3!z,f3z,), mez = F{z(f3!z,f3zzh msz = F{a(f3Iz,f3zz), 

maa = F{1 (f3Jy,/3zy), msa = -F{2 (/3Jy,/3zy), m12,2 = F{4(f3Jz,f3zz), 
f . f f 

mga = F13 (/3Jy,/3zy), mu,a = '-F14 (/3Jy,/3zy) mss = Fzz(/3Iy,/3zy), 

mgs = -F/3 (/3Jy,/3zy), mu,s = F/4(/3Iy,/3zy), mu,JJ = F{4(/3Iy,/3zy), 

mee = F{2(f3Jz,f3zz), mse = F{a(f3!z,f3zz), m12,G = F{4(f3!z,f3zz), 

mss = F{3 (f3Iz,f3zz), m12.s = F{4(f3Jz,f3zz), m12,12 = F{4(f3Jz,f3zz), 

mgg = F{3 (f3Jz,f3zz), mu,9 = -F{4(f3Jz,f3zz), 

ku = EFg{1 (f3lu>f324), k71 = EFg{2 (f3~tt,f3zu), k77 = EFg{2(f3Iu,f3zu) 

(4.2) 

k44 = GJxg{1 (f3Je,f3ze), k4,!0 = GJxgL(f3Je,f3ze), k10,IO = GJxg{2 (f3Ie,f3ze), 

k22 = EJzS{l(f3Iz,f3zz), kez = EJzS{z(f3Iz,f3zzl, 

ksz = EJzS{a(f3Iz, f32z), 

kss = EJyS{2 (/3Iy,/3zy), 

kee = EJzS{z(f3Iz,f3zz), 

kse = EJzS{3 (f3Iz, f3zz), 

k12,6 = EJzS{4(f3Iz, f3zz), 

kss = EJzS{3 (f3Iz, f3zz), 

kgg = E.!zS{3 (f3Iz,f3zz), 

4.2. Cracked Beam Element 

k12,2 = EJzS{4(/3!z,f3zz), 

kgs = -EJyS{3 (/3Iy,/3zy), 

ku,s = EJyS{4(/3Iy,/3zy), 

ku,u = EJyS{4(f3Iy,/3zy), 

k12,12 = EJzS{4(f3!z, f3zz), 

k12,s = EJzS£4(f3Jz,f3zz), 

ku,9 = -EJzS{4(f3Iz,f3zz). 

Because of specific form of the shape functions in this case, we will employ 
the function-notations specified in Appendix, hence, the Me, K. will be calculated 
as 

m44 = h~ 1 (ae,f3e), 
m22 = F{l(az,f3z), 

maa = Ff1(ay,/3y), 

mg3 = Ffa(ay,/3y), 

mez = F{2(az,f3z), 

ms3 = -Ff2(ay,f3y), 
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mss = F~z ( ay, /3y), 
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TnGG = F~2(cx.,f3z), msG = F~3(o:z,f3z), m12,G = F~4(o:z,f3z), 
rnss = F~3(cx.,f3z), m12,8 = F~4(01z,f3z), m12,12 = F;4(cx.,f3z), 

Tngg = F~3(cx.,f3z), m11,9 = -F~4(01z,f3z), 

k44 = GJxg~ 1 (ao,rJo), 
k22 = EJzS{1 (az,f3z), 

k33 = EJyS{1 (ay,/3y), 

k4,JO = GJxg~2 (o:o,f3o), kw,Jo = GJxg~2(ao,f3o), 

k62 = EJzS{2(cxz,f3z), ks2 = EJzS{3(cxz, Pz), 

ks3 = -EJyS{2 (cxy,fly), k12,2 = EJzS{4 (<>z,f3z), 

k93 = EJvS{3 (ay,~iv), kll,3 = -EJvS{4(ay,/3y), kss = EJvsL(ay,(Jy), 

k9 s = -EJyS{3(ay,(Jy), kll,S = EJyS{4 (cxy,/3y), kll,ll = EJyS{4 (cxy,(Jy), 

k66 = EJzS{2(azJlz), kse = EJzS{3(cxz,f3z), k12,6 = EJzS{4(cxz,f3z), 

kss = EJzS{3(cxz,f3z), k12,8 = EJzS{4 (<>z,f3z), k12,12 = EJzS{4 (cxz,f3z), 

kgg = EJzS{3(<>z,/1z), kll,9 = -EJzS{4 (a.,f3z)· 

In formulas (4.2), (4.3) the following notations were introduced: <>u, ao, <>y, <>z 
- positions of crack related to axial, torsion and bending displacements and f3u = 
EF/k, f3a = GJx/Vx. (Jy = EJyjvy, fJz = EJz/Vz are so-called crack magnitude 
regarding to mentioned above displacements. This means that the modeled crack 
related to each displacement may be different, it is easy to verify that crack position 
does not influence on the axial and torsional behaviour of the element. 

5. Numerical Examples 

5.1. Flexible Connection 

An example of a beam with two flexural spring at the ends has presented 
(Fig. 2). The parameters of the beam are as follows: L = 1.0 m, E = 2.1 x 
lOll N/m2 , F = 7.8 X 10-4 m 2 , .J = 8.4 X w-sm-4 , p = 7.84 X 103 kg/m3 . The 
results illustrated in Fig. 5 present two first frequencies and have received for two 
cases of (31 : 0.0 (continuous line) and 0.2 (dash line). The parameter (3 2 varies 
on the interval [0.0, 0.9999]. The lines illustrate the variance of frequencies versus 
the (3 2 (The parameters (31 , (3 2 have the same role in variance of the frequencies). 
It can be seen from the results, that for different values (31 the lines are shifting 
down from the line ~i 1 = 0.0. The presented result is similar to that obtained in 
[7). A difference here is that there is taken into consideration the spring flexibility 
instead of its stiffness. 

5.2. Cracked lleam Element 

In another example, a fixed-end beam with a flexural spring describing a crack 
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at a position x is investigated. The parameters of the beam are as the same as the 
beam described in the example 1. The frequencies, which are illustrated in Fig. 6, 
have been computed for four different values of f3 = 0.0, 0.1, 1.0, 5.0. The graphics 
presented in Fig. 6 give the relationship between frequencies and the position of 
crack. The results show good agreement with theoretical ones given in [14]. An 
interest could be seen from the obtained ~esult is that there are positions along 
the beam at which crack does not influence on the frequencies. This fact is useful 
for detecting crack position from measured natural frequencies. 

f1 
180 1\ 
160 

~ 140 j3,:0.0 
120 

\'--..___ 100 ~,.o.z 
80 

')50 .fz 

500 
450 = 0.0 
400 

~2 
350 -1 = 0.2 
300 L::::::=====~=::=:1z 

0 c 0.2 0.4 0.6 08 1.0 0.0 0.2 04 O.(i 0.8 1. 0 

Fig. 5 

180 

160 
460 

140 410 

120 X 360 . X 

Fig. 6 

5.3. Damaged frame structure 

There will be considered the steel frame that·was investigated in [7], see Fig. 7. 
Thus, there is a plan frame structure (with height 7.3m, wide 6.1m) consisting of6 
nodes and 6 circular beam ( ¢ = 0.1 m) elements. Flexible connections of different 
relative flexibility values will be introduced at the nodes connecting the columns 
with the base and the horizontal braces with columns. Cracks are assumed in 
the braces and columns at various positions. The flexible connection and crack 
are investigated only in their bending model. The subject of this calculation is 
change in the natural frequencies of the structure. The cases of damage proposed 
for consideration are as follows: 

Case A: Flexible connection of the same rotation flexibility (f3) is introduced 
simultaneously at the nodes connecting columns with base. 

Case B: Flexible connection at both ends of the middle horizontal brace 
(MHB) with columns. 
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Case C: Flexible connection at both ends of the top horizontal brace (THB) 
with columns. 

Case D: Crack appeared in the MHB at various positions (a) and with dif­
ferent values of magnitude (;3). 

Case E: Crack appeared in the THB at various positions (a) and with different 
values of magnitude (;3). 

Case F: Crack appeared in only one of the columns at various positions (a) 
and with different values of magnitude (;3). 

Case G: Crack appeared in the both columns at various positions ( a1, a 2) 

and with different values of magnitude (f3i, ;32 ). 

Results of computation, the first two natural frequencies corresponding to the 
specified above cases are given in Table 1. 

Analysis of the results leads to the following conclusions: 

1. Damage, either flexible connection or crack in the bending model does not 
changes the third natural frequency of the frame. 

2. Reduction of the stiffness at the joint nodes (flexible connection): 

- Weakening of connection of the structure with base can decrease maximum 
the first frequency 40% and the second one 18%. Decrease of the both frequencies 
versus weakness of the connection stiffness is almost monotonous. 

- Flexible connection of the MHB with columns does not influences on the 
second frequency, while change of the connection between THB and columns leads 
to decrease of the both frequencies. 

- The more distance of the flexible connection from the base is, the less its 
influence on the natural frequencies. 

3. Appearance of crack: 

- Crack appeared at middle of the horizontal elements with any magnitude 
does not changes the second frequency. Influence of the cracks appeared symmet­
rically in both sides of the middle is the same and this influence increases as the 
crack goes far-away from the middle. 

- If crack appeared in a column, the more closed to the base crack position is, 
the more decrease of the first frequency and the less change in the second one. In 
this case change in frequencies is not symmetrical as in the horizontal members, 
minimal change of frequencies is recognised at the upper half of member. 

- Simultaneously appeared at both columns cracks make more change in the 
frequencies than that if crack is only in one column. Unequal of the distances of 
the cracks in columns from the base inflects also to the change of frequencies. This 
change is always less than that if cracks appeared at the least of distance from 
base. 

- In general, the more magnitude of crack, the more decrease of frequencies. 
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Table 1 

Case f3 0.0 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 00 

A lfreq. 1.76 1.69 1.62 1.51 1.42 1.36 1.30 1.15 1.06 1.00 

2freq. 5.60 5.44 5.31 5.13 5.01 4.93 4.87 4.74 4.67 4.64 

B 1 freq. 1.76 1.71 1.66 1.58 1.52 1.47 1.44 1.34 1.27 
2 freq. 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 

.,.-' 

c 1 freq. 1.76 1.74 1.72 1.67 1.63 1.60 1.57 1.47 1.39 
2freq. 5.60 5.50 5.42 5.26 5.24 5.05 4.97 4.75 4.61 

f3 0.1 1.0 2.0 

a 1/8 1/4 1/2 31/4 71/8 1/8 1/4 1/2 1/8 1/4 

D lfreq. 1.68 1.72 1.76 1.72 1.68 1.51 1.62 1.76 1.49 1.60 
2 freq. 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 

E lfreq. 1.73 1.75 1.76 1.75 1.73 1.62 1.69 1.76 1.61 1.68 
2freq. 5.45 5.53 5.60 5.53 5.45 5.11 5.32 5.60 5.07 5.28 

f3 0.1 1.0 

a 1/8 1/4 1/2 31/4 71/8 1/8 1/4 1/2 31/4 71/8 

F lfreq. 1.69 1.72 1.76 1.76 1.75 1.56 1.61 1.73 1.76 1.71 
2freq. 5.47 5.54 5.60 5.52 5.43 5.25 5.40 5.60 5.24 4.99 

!31 = !32 = 2.0 

al 1/8 1/2 31/4 

a2 1/8 1/4 1/2 31/4 71/8 1/8 1/4 1/2 71/8 1/8 

G 1 freq. 1.18 1.28 1.49 1.50 1.41 1.49 1.55 1.68 1.66 1.50 
2freq. 4.87 5.01 5.23 4.81 4.56 5.23 5.38 5.60 4.93 4.81 

6. General Conclusion 

Two cases of modified the beam finite element were developed to study frame 
structures with flexible connections and cracked members. The flexible connec­
ti<:m and crack have been modeled by different types of spring, relative flexibility 
of which together with crack position serve as damage parameters. These ones 
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take part into new form of the shape functions, consequently, the consistent mass 
and stiffness matrices of the structure were constructed also as functions of the 
damage parameters. Thus, by the same procedure of FEM there can be analyzed 
behaviour of the frame structures in dependence on the appearance of damage. 
The developed beam elements have been compiled with SAP IV and made the SAP 
to get a new development, which can be employed to analysis of damaged frame 
structures. Presented here numerical examples show the efficiency and applicable 
of the development. The general result obtained in this study were applied to anal­
ysis and integrity assessment of the oil production offshore platforms operating in 
Bach Ho field, Vietnam. 

This study was completed by financial supports from The National Program 
for Natural scientific research and The Research Program of National Centre for 
Natural Sciences and Technology of Vietnam. 
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APPENDIX- FUNCTION NOTATIONS 

For flexible connection element 

L 

h{i(rr,r2) = J [a;(rr,r2) +xb;(rr,r2)] [aj{rt,r2) +xbj{rr,r2)]dx 

0 

1 2( 1 3 =La;ai+zL a;bi+aib;)+JLb;bj, i,j=1,2 

42 

"' 

.. 

,.. 



L 3 7 

F;~(rl.rz) =I L a;k,ajk2 Xk 1 Xk 2 dx = L bi;(k,r1,r2)Lk, 
0 kl ,k2 k=l 

. - . k-l -
1 ~ -

b;; = k LJ a;taj,k-t-p, 
p=O 

i,j = 1,2,3,4, 

g~(r1,r2) = bi(rt,rz)b;(rt,rz)L, i,j = 1,2, 

L 

s&(rr,rz) = 1 [2aiz(rr,rz) +6a.arr,rz)x] [2aj2(rr,rz) +6aja{rr,r2)x]dx 
0 

= 4La;2aj 2 + 6L2 (ai2aj3 + aiaaj2) + 12L3aiaa;a, i,j = 1, 2, 3, 4. 

b. For cracked element 

ht(r1, r2) = ataj(rl- L) + ~ [atbj + ajbt] (r1- L) 2 + ibtbj(rt- L)3, 

4 = a;(r), bt = b;(r), 
1 1 

h-:.(r1 ,rz) = a:-a-:-r1 + -[a:-b-:- + a-:-b:-]r2
1 + -b:-b-:-r1

3, 
'l • ) 2 • ) J • 3 • J 

h;'j(r) = hij(r)- ht(r), 

Fi]'(rt,rz) = 
7 

Lbt·kh, r2)r~, 
k=l 

7 

Lbifk(rr, rz)(rr - L)k, 
k=i 

k-1 
+ 1 ~ + + 

bijk = k L.Jaipaj,k-t-p• 
p=O 

k-1 

bi;k = ~ Ea;-;,a;;k-t-p• 
p=O 

g;'i(rr,rz) = gij(rr,rz)- gt(rr,r2), 

i,j = 1,2,3,4 

S;}(rl,rz) = 4a£taj;(rr- L) + 6(a£taj3 + a;aaf2 )(rr- L) 2 + 12a;aaf3(rr- L) 3 

Sij (rr, rz) = 4ai:Jaj2r1 + 6(ai:Ja;; + ai;aj2 )ri + 12ai;aj3rf, i,j = 1, 2, 3, 4 

Sjj(rr,r2) = S,j(rl,r2)- S;}(r1,r2) 
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Table A.1. Coefficients of Shape Functions 

Cracked 

Classic 
Flexible 

connection 
0 :::; x :::; r1 rl <x:S::L 

a1o 1 1 ala 1 + a!O 0 

0 6r1 (L±2r2) 0 + 0 au D1 L au au 

al2 
-3 -3(L±2r2) 

ai2 
-3(L2±2r1 r2 ) + 3(L2-2r2(r,-L)] 

£2 D1L De a12 De 

a13 
2 3!.L ala 

2(L+r2) + 2(L+ro) 
£3 DJ£2 De al3 De 

a2o 0 0 a2o 0 + a20 0 

a21 1 L(LHr2) 
a2I 1 + 0 

DJ a21 

a22 
-2 -2(L±3r2) 

an 
-2(£3t3r;r2) + L 3 -6r1 r2 ~r,-L} 

L DJ De a22 De 

a2a 
1 L±2r. 

a23 
L2 ±2r, r2 + L2 ±2r,rz 

£2 D1L De a23 De 

aao 0 0 aao 0 + aao 1 

a31 0 6r1 (L±2e2) 
a a! 0 + 0 

D1L a3I 

aa2 
3 3(£±2r2) 

a32 
3(L2±2r! r2) + -3[£2 -2r2 (r 1 -L )J 

£2 D1L De a32 De 

-2 ~ a;-3 
-2(Ltr2) + -2(Ltr,) 

a33 £3 f De a33 De 

a4o 0 0 a4o 0 + a40 0 

a41 0 -2Lr, 
a41 0 + 1 

DJ a41 

a42 
-1 -L 

a:;-2 
-[E3 -6r1 r 2 (r1 -L )J + 2[£3 t3r, (r1 -£ )2j 

L DJ De a42 De 

a43 
1 .b.±1!:.. a43 

2(L±r2 ) + £-2r2 (r1-L) 
£2 Df De a43 De ' ~. 

df = L + r 1 + r 2 

DJ = L 2 + 4L(r1 + r2) + 12r1 r2 
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de= L + r2 

. .f}c = Ll£3+ 12r1r2{rt- L) + 4L2r2). 

p1 = a1 + bJ.x, P2 = a2 + b2x 

Pi= Cia+ Ci1x + Ci1x2 + Ci1x3
, j = 3,4,5,6 

Pi= a;+ b;x, 0::; x < r1, Pi= at+ bt(x- L), r1::; x < L, i = 1,2 

- - - 2 - 3 O< Pi=ai0 +ai1x+ai1x +ai2x, _x<r1, 

Pi= aj0 + aj1(x- L) + aMx- L) 2 + aj3 (x- £) 3
, r1::; x < L 

j = 3,4,5,6 
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PHAN TICH flQNG KET CAU KHONG NGUYEN V~N 
BANG PHUONG PHAP PHAN Ttr Hfru H4N cAI BIEN 

Ph"an ttl- drun c5 di~n da dm;rc cai bien va phat trign dg pharr tfch dao d{lng 
ella m{lt khung khOng gian v&i ca.c lien kilt mem va cac pharr ttl- c6 ve't nll-t. Ma 
tr~n d{l clhlg va rna tr~n khili hrqng dU'qc thie't l~p cho cac pharr ttl- drun d.i bien 
n~~kbh~d~g~,~~~~v*~~l~~~ri 
ve't nm b~ng cac lo xo tmmg dmmg. Ham d~g nay vb c6 d'!-ng da thll-c b~c 
ba va c6 chll-a cac tham so ella lien kilt (ella ve't nm). Chung khOng lam thay d5i 
quy trlnh th1rang dung ella vi~c mo hlnh h6a b~ng ph1rang phap PTHH. Do v~y, 
phU'ang phap dU'a ra (y day d~ dang ap d\mg dg pharr tfch tham so trong bai toan 
trj rieng ella cac kilt ci(u theo cac tham so ella Jii?m kilt mem (hay vilt nm). Cach 
tiilp c~n ml.y da dU'qc ap dvng dg tfnh ca.c gia trj rieng va d?-ng rieng ella kilt cau 
khung cho mot so vf du. . . 
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