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INTERACTION BETWEEN THE ELEMENTS
CHARACTERIZING THE FORCED AND
PARAMETRIC EXCITATIONS

NGUYEN VaN Dao
Vietnam National University, Hanot,

ABSTRACT. In nonlinear systems, the first order of smallness terms of nonresonance
forced and parametric excitations have no effect on the oscillation in the first approxima-
tion. However, they do interact one with another in the second approximation,

Using the asymptotic methed of nonlinear mechanics [1] we obtain the equations for
the amplitudes and phases of oscillation. The amplitude curves are drawn by means of a
digital computer. The stationary oscillations and their stability are of special interest.

1. Construction of approximate solutions

The nonlinear system under consideration in this paper is governed by the
differential equation

i +w?z = e[gcos(2wt + x) + preoswt| + £?(Az — 2kt — Bz°), (1.1)

where 2 A = w? —1 and 1 is natural frequency. The terms with g and p represent
the forced and parametric excitations, respectively. Both of them are in nonreso-
nance. The forced excitation will be in resonance when it has frequency w instead
of 2w. In contrary, the parameiric excitation will be in the principal resonance
when it has frequency 2w instead of w.

The solution of the equation (1.1) is found in the form
z=acosf+euy(a,P,8) +cluz(a,,0) +e3..., 8=wt+, (1.2)

where @ and 1 must be determined from the following differential equations

d—a = EA](G,’!,D) + 52A2("fa '!’) ooy
& (13)
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The functions u;(a, 1, ) are periodic with period 27 with respect to both angular
variables ¢/ and # and do not contain the first harmonics sin8, cos 8 and A;(a, ¥),
B;(a, ) are periodic functions with period 27 with respect to the angular variable
). For determination of these functions, we will use the procedure of direct dif-
ferentiations and substitutions into the criginal equation {1.1) and subsequently
equating firstly terms with equal powers of € and then terms with equal harmonics

siné, cos 6.
Comparing the coefficients of ¢! in (1.1) we obtain
. 2 32”'-1
—2wAyrsin8 — 2awB;cos§ +w ( EYD + ul) = { COS [2(0 - P)+ x]
+ apcos(f — v) cos 8. (1.4)

Comparing the harmonics in (1.4) gives:

Ay = By =0, - (1.5}
__ pa 1 ; pa
Uy = g cost — m[q cos(2¢ — x) + g cos ¢] cos 24
——I—[Sin(2¢ )+ B xb] in 20 (1.6)
WAL X) + 7 sing| sin 26. .

Comparing the coefficients of €2 in (1.1) we get

62u2
00,
+ Zhwasind — Ba® cos® 4. (1.7)

+ ug) = puy coswt + Aacosl

—2wA,sinfd — 2waB; cos § + w? (

Equating the coefficients of the first harmonics sin  and cos @ in (1.7) we obtain

2

] a ) 3
Az(a,v) = —ha — ';;_E sin 29 + lgqs sin(y — x),
A g 38 C )
p 2 P Pq
By(a, ) = —— — e R - X)-
2(0¥) =~ 3, " ToE T aw® " ad P o5, W =X

So, in the second approximation one has:

_ pa _ _1_[ — pa
T =acosl + s{ " cos ¢ " gcos(2¢ — x) + 5 Cos ¢] cos’29
. pa .
- g‘(;-z- [q sm(2¢ — X) + "'é-' Slll’(,b:l 510 26}, (19)
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with ¢ and ¢ determined by the equations

d 2 C 2

o s B g Py ]

e 2wlTTT 4 7T 6 | (1.10)

46 5 S By 10)
e 5;[ A+ 5 )¢ 4,3@_-_17:4 coszwm-gcos(t/)—x)]_

2. Statiohary solutions

2 - : _
By putting R = %— , E = -{E , we have the following equations for stationary
solutions:
fo=0, go=0. (2.1)
where
fo = 2whap + Rasin 245 + Esin(¢o — x),
_ p? 3, 3
go = [A + =)o - zﬂ“o + Rag cos 2tpg + E cos(pg — x),
or equivalently
focoso — gosinyy =0,
fosinyg + gocos ¢y = 0.
From here we obtain
i 8 5.2 | P
2whag sin g — [—ﬁao - (A + Y + R)] agcosg + Ecosy =0,
4 (2.2)

2
A+ % - R)]aosim/)o + 2whagcostpg — Esiny = 0.

308 (

Note. The equations (2.2} have the form

Asinyg + Beosyp = C. (1)

From (1) it follows

A?sin? ¢y = C* + B? cos? b — 2BC cos . (2)

Substituting sin®+4 by 1 — cos2+ we obtain the quadratic equation with respect

to cos
(A% + Bz) cos? 1pg — 2BC costpp + C* — A% = 0. (3)
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The reality condition of cos ) is
A* — B2c2 _ (A2 +BZ)(02 _ A2) — A?(Az +B2 _ 02) 2 0’

or

A24BE>C o (23)

Applying the reality condition (2.3) to the equations (2.2) we have:

2 2
a? {4w2h2 + Eﬂag — (A +’£6—- + R)] } > E%cos? x, (2.4)
and |
2 2
al {4w2h2 + Eﬁag — (A + % — R)] } > E?sin’ x. (2.5)

3. System without friction (h=0)

In this case, the equations (2.2} take the form

[%ﬁaé— (A—l—%f-l—R)]aocos%:Ecosx, (51)
263 — (8 +2 ~ ) ]aosingo = Bsinx. |
The following subcases should be identified:
a) Subcase 1.
Eﬁag— (A+%2+R)} Eﬁag— (A+I;—2—R)] # 0. (3.2)

Eliminating the phase o from (34) we obtain the equation for the resonance
curve C:

W(w?ad) =0, (3.3)
where
E?cos?y E?sin®y
W(w?, ad) = ; . 2t 3 2 - —aj. (3.4)
ZBa2 il Z8a% LA
[4’6%_ (A+ 6 +R)] [4ﬁ“° (A+ 6 R)]
b) Subcase 2.
3, p? _
Zﬂao——(A-i--g-l-R)—-O (3.5)



So, the resonance curve C is given by the equation

3,2 2 P
JPao=w -1+ =+ R | | (3.6)

In this ca.sérthe equations (2.2) become

O.agcostpg = Ecosy,
2Ragsinyg = Esiny,

and therefore,

_ T 37
cosxy =0=>x= 2' 3
. E
sinx = +1 and g = Tarcsin 2Ray’
. E 2 2 E2 ’ - .
(2Ra0) 51'—_}‘102@5- (37)

¢) Subcase 3.

§ﬁa2_(A+ﬁ——R)zO (3.8)
4 0 6 * %‘—
The resonance curve C3 has form: -t

3 ' p* ' A o

Zﬁaé:wz—l—f—g—ﬁ. .(3'9)
From the equations (2.2) we cbtain

O.asin ¢ = Esiny,

2Ragcos g = —F cos x,

and therefore,
siny=0=x =0, 7, ‘
BE? (3.10)

. +
cosx = %1, ¢=a.rccoszR #agzm.-

o
, T L7 S
Last two subcases show that, if x # 0, 30 5 the resonance curves Cjy,
T

. an , o
- Cg do not exist. If y = 705 then beside the resonance curve C; there is still
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: . E?
a semi-straight line Cy in the plane (2%, w?) with ¢ > TR If x = 0, m, then
beside the curve C; there is still a semi-straight line Cz in the plane (a3, w?) with

2

al

>
~ 4R?

4. System with friction (r #0)
Now, we consider the equations (2.2), denoting

_a2n2 [3a2 AT

D =4wh? + [4;9% (A + 6)] R?,
_[[34,2 p? X

D, = {[Zﬁao - (A—}- ?—I—R)] smx-2whcosx}E, (4.1)
— : 3, 2 P2

D, = {thsmx + [4ﬂa0 (A + 5 R)] cosx}E.

a) Subcase 1. D#0

In this subcase we have

. D
a031n¢z—bl, agcosqb=-bz,
W =D?+ D2 —aiD? = 0. | (4.2)

For x = 0, the equation (4.2) takes the form

{4w2h2 + [A + % - gﬁag - R]z}Ez
- ag{R2 - [%ﬁag - (A + %2)]2 - 4w2h2}2 = 0. (4.3)

To solve this equation on digital computer, it is convenient to write it in the form
of an algebraic equation relatively to the variable §:

a26% — 38a36°% + [ _E*+d} (gszﬁza‘é +8h2w? — 2R2)] 52
3 9
+ [2E2 (Zﬂag + R) + 384 (R2 ~ =B%a —4h2w2)] 5 (4.3a)
9 2 3 2
2 p2 412 2 2 a2 4\° _ p2[.2 2 S a2 _
+ a} (R? - 4h%w —5 ao) B [4h%w +(4[£a0+R) | =0,

o _
whereé:A—l—E,wzzl.
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N 3
double equation 6 — Zﬂa%_R =0 (curve 2, Fig.3, 4) and E?—q} (é—z-ﬁag+R)

The relation (4.3a) gives the dependence of the amplitude a on the frequency
w (through &) and is presented for the parameters: h = 1073, R =0.02, F = 1072,
8 = 0.08 (Fig.1), § == —0.08 (Fig.2) and h =0, R = 0.02, E = 10~2, 8 = 0.08
(Fig.3), B = —0.08 (Fig.4). When k = 0, the equation (4.3) degenerates int‘? a

0 (curve 1, Fig. 3, 4).

-0.08 -0.04 0.

Fig. 1. Amplitude curves for the case § > 0, h > 0.

Curves 2 serve as the boundary of stability zone =z5+ ug - vé’ = 0,
g
1.00 - oo
x R )
0.50 —
0.00 8
-008 -004 000 0.04
Fig. 2. Amplitude curves for the case 8 < 0, h > 0. 0
Curves 2 gerve as the boundary of stability zone M = 28 + ug —vg = 0.
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1.00

(.30

[ |
-0.08 -0.04 0.00

Fig. 8. Amplitude curves in absence of friction and for the case § > 0.

0.060 i I I
~0.08 -0.04 000 0.04

Fig. 4. Amplitude curves in absence of friction and for the case 8 <0.

b) Subcase 2. D=0

In this subcase we have the follewing equation for the resonance curve:
3, 2 2 p? |
Zﬂa*=w —1+-f—5—:|: R2 — 4uw?h? . (4.4)
The expressions (4.2) give D, = D; = 0, or equivalently,
Diycosxy — Dysiny =0, Disiny +Dgcosy =0.
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Substituting here the values of Dy and D, from (4.1) we get

R 3 2
.= ——sin2x, = 2 —wi o1 r_ .
W o7 Sin2x 4ﬁa* .w* + A Rcos2x. (4.5)

Taking into account these values of ¢ and w, the condition (2.4) takes the form

E2
2 .
% 2 Jpr

5. Stability of Oscillations

We now consider the stability of stationary oscillations with the amplitude a
and phase 9 determined by the equation (1.10):

da g2 . :
Et— = —E [Z + vsm2¢ -+ ESIn("p - X)]’
: ‘ T (5.1)

d
a_d}?.:-%[u+vcosZ¢+Ecos(¢—x)],
where
P —pg p* 3. 4
R=?,E=T,6=A+E,z=2hwa, v = Ra, u=6a—zﬁa.(5.2)

Stationary values aq, ¥o of equations (5.1) are determined from the equations:
f =0, g =0, where

J = 20 + vosin 29 + Esin(to — X),
g = Yo + vo o8 2¢g + ECOS(‘l‘bo — X), (5.3)

3
zo = 2hwag, vo = Rag, wug=bap - Zﬂaﬁ.

The following equations are equivalent to f = g = 0:

fsin(o — x) + gcosfaho — x) =0,
f cos(ho — x) — gsin{tho — x) =0,

which give:

(20 — vosin2x) sin(¢o — X} + (uo + vo cos 2x) cos(¢pg — x) = —E,
(—uo + vg cos 2x) sin(¢o — x) + (20 + vosin2x) cos(yo — x) = 0,
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(v3 — 22 — u2) cos(tpo ~ x) = E(uo — vo cos 2x) |

5.4
(v2 — 22 — ud) sin(1o — x} = E(20 + vosin 2x) (5.4)
T w2 — 22 - ul £ 0.
Eliminating the phase 1y we obtain
W =0, (5.5)
there
W = (22 + vl ~— v3)? — E%[(uo — vo cos 2x)? + (20 + vosin2x)?]. (5.6)

Denoting @ = a—ao, qz = 1) —1pg we have the following equations in variations:

da g2 . . .
= =5 {(z{) + vg sin 24P0)@ + [2v0 cos 2vo + E cos(ypo — x)]¢},
2w (5.7)
d g? . _ . . '
aod—? =—5- {(ug + v{ cos 2¢p)@ ~ [2v0 sin 290 + E sin(yg — x)]1,b},
vhere J p P
! = —z / = —E) ! = (-—E ‘
%o (da) a=dg ’ Yo ( da a=ag ’ Yo da ) a=ag .
The characteristic equation of this sjrstem of equations is
2, 2 et
agA” + e“hA — ms =0, . (5.8)

vhere

S = (z} +-v6.sin 215) [Zvo sin 2o + E sin(to ——.x)]
+ (ug + v cos 21hg) [2vo cos 24y + E cos(hg — x)]
= 2vuqu} + 220V sin 29 + 2ufvo cos 2Po (5.9)
+ E[(26 + vhsin 2¢0) sin(ipo — x) + (uh + v§ cos 2¢) cos(¥o — x)] - '

Substituting here the expressions for vgsin 2¢yg, vgcos 2y from equations
f=0,g=0(53) we have

§ = 2vovy — 22420 — 2ufuo + E [vg cos(yo + x) — zh sin(Po — x) — uf cos(o — x)] |
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or

S = 2vguy — 2202y — 2ugul+ (5.10)
E[(vfcos 2x — ub) cos(po — x) — (vhsin2x +.25) sin(to — x)].

Taking into account expressions (5.4) we can write

d E2 d '
or from (5.6):
1 aw

S = v2 — 22 —ul #£0. (5.11)

2(vE — 22 — ul) dap’

Thus, the stability condition takes the form:

ow
M.——>0 5.12
6ao > ’ ( )

where M = 23 + u? — vi.

The resonance curve (W = 0) divides the plane (ao,w) into regions, in each of
which the expression W has a define sign(+ or —). If moving up along the straight
line parallel to the axis ap, we pass from a region W < 0 to a region W > 0,
then at the point of intersection between the straight line and the resonance curve
the derivative 8W /3ay is positive. So, this point corresponds to a stable state of
oscillation if M > 0 and to an unstable one if M < 0. On the contrary, if we pass
from a region W > 0 to a region W < 0, then the point of intersection corresponds
to a stable of oscillation if M < 0 and to an unstable one if M > 0.

In Figs 1 and 2 equations M = O are presented by curves 2 and in the stippled
region the expression M is negative. The heavy lines correspond to a stable state
of oscillations, where the stability conditions {5.12) are satisfied.

6. Conclusion

The interaction between the elements characterizing the forced and paramet-
ric excitations has been studied. The first order of smallness terms of nonresonance
forced and parametric excitations have no effect on the oscillation in the first ap-
proximation. The equations (1.10) show that these terms are not in equality. The
effect of forced excitation (g) exists only with the presence of parametric excitation
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(p), while the effect of parametric excitation will exist even with the absence of
forced one (¢ = 0). The stationary oscillations and their stability in the system
with and without friction are of special interest.
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TUONG TAC GITA CAC PHAN TU DAC TRUNG
cHO KicH pONG cUSNG BUC VA THONG 86

Trong céc hé phi tuyén, nhitng kich déng cwéng birc va théng s8 cé dd bé
bic nhét va khéng cong hwéng sé khéng c6 dnh hwdng dén dao ddng trong xip x!
th& nh&t. Tuy nhién, ching tic ddng qua lai nhau trong x&p xi th hai va dwoc
nghién ciku trong bai béo ndy. K& qua cho thiy anh hudng cta thanh phin kich
déng cwimg birc chi xuft hién khi cé tic déng clia thinh phin kich déng théng
s8. Trong lac d6, tic d6ng cla thanh phin théng s6 ton tai cd khi ving mit kich
dong cudng bic. Dao déng dirng va su on dinh cida ching cda hé trong trudmg
hop khéng ¢adn va ¢é cdn dwoc dic biét quan tdm nghién ciu.
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