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- ON QUASIPERIODIC OSCILLATIONS OF
A NONLINEAR DYNAMIC SYSTEM OF
LIAPUNOV TYPE WITH TIME LAG

LE XUAN CAN
Department of Mechanics - VNU Hanot

ABSTRACT. The paper is concerned with the investigation of the quasiperiodic oscilla-
tions of a nonlinear dynamic system of Liapunov type with time lag. The following results
are obtained: :

- The necessary and sufficient conditions for the existence of the quasiperiodic solution
describing the oscillating processes.

- The approximate quasiperiodic solution in the power series.

- The quasiperiodic oscillations of a nonlinear dynamic system of Duffing type with
the quasiperiodic perturbations. :

L. Let us consider a nonhnea.r dyna.mlc systerr described by the differential equa-
ion of the form '

2

d“z
Eg_,—%-w 2:+X( )—EF(tm.'EA,

dz d:r:A), (1.1)

dt ’ di

vhere € is a small parameter, X(z) is a power series in z of the form

X(z) = yoz® + y32® + ... (1.2)
F'is a continuous in ¢ and quasiperiodic function with frequency basis vy, vq,..., v,
dz dz
:nd analytical function in z, za, e th in the domair D. Here zao = m(t - A),
al“‘md(t A), Ai iti b
Fralal ), A is a positive number.

Together with given differential equa.tlon we caonsider the followmg dlﬁ"erentla.l
:quation called degenerate equ&tmn whlch cafi be obtamed from.(1.1) by putting
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It is easy to see that equation (1.3) is differential equation of Liapunov type
because we can find its initial integral in the form

dp\2 o — B

(d—::) + wiz? + 2/ X(z)dz = const. (1.4)
It is known that the Liapunov type equation (1.3) has a continuous in ¢ and

periodic solution depending on two parameters with period T in the form [1]

2 .
T = -E(I—f—agcz-f—a;;ca-l—...),' (1.5)

where the first coefficient a; in expression (1.5) is different from zero and has the
even index (denoted by af), ¢ is value of = in initial moment ¢ = 0.

‘We prove first the following theorem:

Theorem 1.1. If the development of function X(z) in power series is such that
the first coefficient y; which is different from zero and denoted by ~; has the odd
index 2m + 1, then the coefficient o} has even indez 2m. If 4} has even indez 2m
and following odd index ts equal to 2m + 2k +1 (k =0,1,2,...) for v; =0, then
o} has index min(2m + 2k, 4m — 2).

Proof. Making in the equation (1.3) the variable change ¢ = (1 + oe) we obtain
‘ , w

the following equation:

d2

A2z A
gz trte (2+a):c+(

1+a)2X(a:) =0. (1.6)

Together with (1.6) we consider an auxiliary mtegro—diﬁ'erenttal equation of
the form

2 2
%—5+$+a(2+a)z+(1+a) X(z) = Wcosr,
Ix
1 1+ a2
W=;/[a(2+a)x—|— (F22) X(@)] cos ra. (1.7)
: ‘

The continuous in 7 and 2r-periodic solution of the syste m (1.7) will be found
)

(

by the iteration method with the initial conditions z(0) = 2

As the 0-th order approximation for this solution we ta.ke

{ zo(r) = c.cosT,

W, =o0. (1.8)
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As the n-th order approximation for the solution we shall take ti:: .m-periodic
solution of the following nonhomogeneous linear system of equation-- '

d?x; . ' 14 o2 | '
dfr; +zat a2+ a),f'f'ru-l + ( " ) X(?n_—l) =W, i " (19)
2T | 2
1 l1+a '
W, = ;/ [a(2+ a)Tp-1+ (T) X(:z:n_l)] costdr, (n= 1 1 3,...)..
0

It has the form

Y X (eanr) W, 1], (L10)

Tn(r) = Mcost + L[f,a(z + @)zp_1 + (

where M will be determined by initial conditions, operator L[r,y(r)] is linear and
homogeneous in y(r) and admits estimate |L{r,y(r})|| < AB with max |y(r)| < B
and with constant A which does not depend on y(r).

Carrying out the estimate of the quantities |.1:n(r) — zo(7)|, [Whl, lza(r) —
Zn—1(7)|, |Wn — Wpn_1| we can assert that the sequences {z,(r)}, {Wyr} are uni-
formly convergent to the limit functions Z(r, ¢, ), W{ec, o} with enough small .

These functions satisfy equation (1.7) and Z(r, ¢, ) is continuous in 7 and 27
periodic function and analytical in ¢ and « function.

We can express the function W{e, a) in the form
W{e, a) = a(2 + a)(c - ePre — )+ P8y + (.. ), (1.11)

where 8;, §, are constants, 6, # 0, 28 = 2m if v; has the odd index 2m + 1,
28 = min(2m + 2k,4m — 2) if 4} has the even index 2m and following odd index
with +; # 0 is equal to 2m + 2k + 1. Hence

Wi(c,a) =0 (1.12)

is the necessary and sufficient conditions for the existence of the continuous in 7
and 27-periodic solution of the equation (1.6).

Developing left-hand side of equality (1.12) in the power series in « we find

a=ape? +... ' : (1.13)

In the particular case: 2m+2k = 4m—2 and the coefficients for correspondent
degree in the expression (1.11) are the same on modulus and are inverse on the
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sign, the development of a{¢) in the power series will be begun by the term of
highest order greater than min(2m + 2k, 4m — 2).
However;-this-case.can be eliminated-with-the aid of variation of coefficient

Yem+2k+1-

2. In this section we consider the differential equation of the form (1.1).
Suppose that there exists the combinatory resonance in the dynamic system, i.e.
there is the relationship:

w = ki1 + kavy + - + kpvp = (k,v) (2.1)

where k = (k1,k2,...,ks), ¥ = (v1,va,...,Vs), (k,v) is scalar product of two
vectors k and ».

The purpbse of this section is to give the necessary and sufficient conditions for
the existence of the continuous in ¢ and quasiperiodic solution with the frequency
basis vy,vs,. ..,V of the differential equation (1.1). We shall present again the
method for construction of the approximate solution of the equation in the power
series. '

For this aim we introduce the partial differential equation called associated
equation in the form [2].

r L n
_ %u 2 : Ju dua
a_aiuf-"uj + (k,V) Ut Y(u) =@ (91: T ana U, Up, ‘ a—aivi: Z 'a—eil"i)
' (2.2)

.1.',]':1 - 2= =1

where ¥ (u) = X(z = u), v = u(fy,...,0,,€),

B _ 3 _ dg;m . du d.’.l:A_ = dua
d = F(u.,t =f0,z=u712a = ¥a, :i? = ar 59—1_1/“ —dt - Z 36; V‘)

=1
up =u(ly —v14,...,0, — v, €).
We can easy assert

Theorem 2.1. If the function u(0y,...,0,,€) is the continuous in 6,,8,,...,0,
and 2w-periodic solution of the equation (2.2), then the function z(t,e) =
u(vqt,. .., Unt,€) 15 the continuous in t and quasiperiodic solution with frequen-
cy basis vy, va, ...V, of differential ordinary equation (1.1).

The proof is straightforward.




To the equation (2.2) we associate now an auxiliary system of integro-differ-
ential equations of the form

piid vy + k Vr+Y(p) =
oz, 8000, () +Yw) = ]
| ' " v TN
_ o A i(k 8) —i(k8)
=¢e® (61, 2 0n VA, aoiyhz EYR U‘L) +We +We
=1 ) (23)
2w 2T o
1 . .
= —ed)e~*®Ogp, ... do,,
W (%)nf f[Y(y) cd]e 1
[¢] ]

where W is complex conjugate quantity for W, (k,8) is scalar product of two
vectors k = (ky,...,kn), 8= (01,...,0,).

Theorem 2.2. The system of integro-differential equations (2.3) has always a
family of continuous in 81,02,...,0, and 2w-periodic solutions depending on two
arbitrary constants.

Proof. The theorem will be proved by the iteration method. As the 0-th order
approximation of the solution of the system (2.3} we take

vo = ae'tF®) 4+ Ee_i(k’a),

(2.4)
WO = Oa

where a is arbitrary constant, @ is complex conjugate quantity for a.

As the n-th approximation of the solution of the system (2.3) we take the
solution of nonhomogeneous linear system of partial differential equations of the
form '

Y] o ' o
—V—V{b’j + (k,l’)zvn -+ Y(Vn—l) = EFn—-l + Wne‘(kss) 4+ Wﬂe”f'(kﬂ),
2 30.90;

| 1 2r 2@ ‘ (2.5)
Wi = // [Y(vn1) —2Fn_1]e &0 do, . 44,
‘ o 0

where

d 31‘ 39,;

3=]

' ™ v v
' ' Yn—1 An—1 :
Fn-—l :F[sls---aanayn——-h'jf_\,n—h Viaz__'__yi]-




Setting the estimate on the quantities |vp ~ vp—1|, |Wn — Wa-1|, [tn — o),
|Wy.| we can assert that the sequences {v,}, {W,} are uniformly convergent to the
limit functions vy, W, with-enough small-¢ and presented boundary conditions. -

v, and W, satisfy the system of equations {2.3), the function depending on
two arbitrary constants a, and a;, (¢, = Rea, a;, = Ima).

From this result we can deduce the following theorem:

Theorem 2.3. The necessary and sufficient conditions for the existence of the
continuous in t and guasiperiodic solution with the frequency basis vy,...,uy, of
equation (1.1) are that the constant a, and a;m satisfy the following equalities:

™ ReW =0,

2.6
ImW = 0. (26)

Going into details we can show that if the function X{(z) is a power series in
z in the form

X(z) = Vom412™ T + yampaz?™ T 4L

then the quantities ¢, and a;,n can-be expressed in the form

1 2
ar —_ allgzm:Fl + 31232m+z + ceey (2 7)

N - 2
Qim == Q21837 F1 4 Qgee?m¥2z + .,

Giving € — 0 the continuous in ¢ and quasiperiodic solution obtained with fre-
quency basis 11, vy, ...,y of differential equation (1.1) deduces to trivial solution
z = 0 of degenerate equation (1.3).

3.  As an application of the presented method we consider a differential
equation describing the oscillations in a nonlinear dynamic system of Duffing type
under the quasiperiodic perturbations:

d%z : ‘
e} +wiz+2® = e[(l —azd)za + Ay cosuit + Ag cos uzt], (3.1)

where v, a, A, A;, Ay are positive constants, € is a small parameter, 2y and v,
are independent, i.e. kivy + k2v2 = 0 and k,, ko~ integers imply k; = 0, k2 = 0.
We assume that w = vy, i.e. there exists the principal resonance on the frequency
vy, ) )




Associated equations for (3.1) can be written in the form

ad 2 2 3 __ _[ _ 2 aUA aUA
(56—11}1) v viu+qu” =¢l(1 auA)(aol u; + 50, u2)
. ' - 4+ Ay cos@y + Ay cos 92],, . (3.2).

and corresponding auxiliary system can be expressed in the form

d 0 2 2 3 _
( +-é"§;f/2) U+U1V+"YU =

ET R
v v . .

— — 2 ___A ___$ 191 “161
= s[(l aVA)( 20, v+ 2, U2) 4+ Ajcosb; + A, cosﬂz] +We't +We

21 2w P 3

1 VA VA '

W= G f / [""’3 —e(l- "“’i)( a6, " T 30, ¥ 2)

00

+ Ajcosly + Az cos 32] e~ 10 d6,db,, : (3.3)

where W is complex conjugate of W.

In this case the existence of the continuous in ¢t and quasiperiodic solution of
the equation (3.1) is determined. We can find therefore the solution of (3.3) in the
form

v=11e"% +1pe?® tuge+ ...,
W =W,e¥/? + Wy + Wae+ ...

Substituting (3.4) into (3.3) we can find the system of equations determining the
functions vy, vq, s, ... and the quantities W, , W, W3, ...

(3.4)

8, |, = _—if
vlzale“-t-a.lg t W; =0,
0, = _—if

vy = age’™ + ag1€ R Wy =0,

it = —i8; , Y (. .3.3i8, | —3_—3if Ap By . —ifs
vz = aze*™ + @ge + —=(aje +are —{e*"* e

Sllf( 1 -1 )Z(Vf'-b’zz)( )s
A

— 2= 1

W3 = 3’70}10.1 b '—2— ; (3.7)

---------------

where a; (¢ = 1,2,3,...) are arbitrary constants, which are the terms of the power
series

a=a.6"% + a6 v aze+...,

= 1,2,3,...) are complex conjugate of a;. Giving W = 0, i.e. W3 = 0,
Ws = 0,... we can find the solution of equation (3.2). From this result we find
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the continuous in ¢ and quasiperiodic solution with frequency basis v, v, of the
equation (3.1):

24

2
.T(t’e) = 3 ’3—;'(6031/115—55.1'11/11&)51/3 _ vy

33 18A1’72
+ cosuy(t + A} -+ 2sinq(t — A) +2cos vyt — A)]52/3

2
- [2( v + Ay )(cosylt—sinult)

[sinvy(t + A)

0\4; | 1607
+ 2vi (cosvy(t —2A) —sinwy(t — 2A))
974,
1 . Ag
+ 24’/% (COS 31t + sin 31/1t) - m cos l/zt] e+ ...
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VE DAOC DONG TUA TUAN HOAN cUA HE PONG LUC PHI TUYEN
LIAPUNOV CO CHAM

Céng trinh danh cho viéc nghién ctu dao dong twa tuiin hodn cia hé dong
lwc phi tuyén Liapunov ¢6 chdm. D& nhén dugc cdc két qud sau day:

- Xéc dinh diéu kién cdn va di cho sy tdn tai nghiém tira tuin hoan md ta
cédc qua trinh dao déng cda hé.

- Xay dung nghiém tya tuin hodn gin ding dwéi dang chuoi liy thira.

- Khdo st dao ddng twa tudn hoan cida hé ddng lwc phi tuyén cé chim loal
Duffing v4i nhiéu loan tuin hon.



