Vietnam Journal of Mechanics, NCST of Vietnam Vol. 31, 1999, No 4 (239 - 250)

ON THE ELEMENT FREE GALERKIN METHOD
IN THE STATIC-ANALYSIS FOR THE 2-D
ELASTIC-LINEAR PROBLEM
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ABSTRACT. The Element Free Galerkin (EFG) method is a meshless method for solv-
ing partial differential equations in which the trial and test functions employed in the
discretization process result from moving least square inierpolations (weak form of the
variational principle). In this paper, the EFG method for solving problems in elasto-
statics (1-D, 2-D) is developed and numerically implemented. The present method is a
meshless method, as it does not need a “finite element mesh” and it is only composed by
the particles with theirs “compact support” (the influence domain) in the whole domain.
Specially, the shape functions are not satisfying the Kronecker delta property, therefore,
in this paper, we must enforce the esseutial boundary conditions by the Lagrangian multi-
pliers method. Finally, several numerical examples are presented to illustrate the per-
formance of the EFG method. The results are compared with the other method (EFM)
and also with the analytic solutions. It shows that the EFG method gives the good effec-
tiveness of the proposed error estimator in the global energy norm and the high rates of
convergence with the size of the “compact support”.

1. Introduction

The meshless methods are very attractive for the development of adaptive
methods (h-adaptive, p-adaptive and h — p adaptive) for solving boundary value
problems. The meshless approach is based on the local symmetric weak form and
moving least squares approximations. The main advantage of this method over
the widely used finite element method and other so called meshless methods, EFG
method [Belytschko et al 1994|. [Lu et al 1994], [Zhu and Atluri 1998], reproducing
kernel particle method (RKPM) [Liu et all 1996], H-P cloud method [Duart et al
1998|, is that it does not need a “finite element mesh” and requires only nodal
data for the construction of the approximation. The approximating functions
in EFG are moving least square approximates (MLS). They are not interpolate
because the approximation does not pass through the data, this is often referred
to as failure to satisfy the Kronecker delta property. Consequence, the essential
boundary conditions can’t be specified directly. However, we need enforcing the
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essential boundary conditions by the Lagrangian multipliers method, modified the
form of variational principle, the penalty method.... In this paper, we use the
Lagrangian multipliers method to implement the essential boundary conditions in
the EFG method [Belytschko et al 1994], [Lu et al 1994].

The distribution of the node is regular and the domain of influence of node
is the straight line (1-D) and the rectangular (2-D). The local Petrov-Galerkin
formulation for elasto-statics and its numerical implementation are developed. The
numerical results is shown by the comparison table with the analytic solution and
the diagrams (displacements, shear stress, rate of convergence...).

2. Moving Least-Square Formula in EFG Method

Let u(x) be a sufficiently smooth function (u(x) € C°(f1) at least) that is
defined on a simply connected open set 2 € R™. Then for a fixed point X € {1, one
should always be able to approximate u(x) by a polynomial series locally according
to the Stone-Weierstrass theorem. Thus we can define a local function:

Vx € B(X
T e o e (2.1)
0 ¥x ¢ B(X),
where the open sphere B(X) is.defined as
B(X) = {x“x——i] < r,xeﬁ}. (2.2)

The local approximation u”(x,X) of the function u(x) is expressed as the inner
product of a vector of the polynomial basis p(X) and a vector of the coefficients
a(x):

ub(x,%) =p(®alx) xed, (2.3)
where p(x), a(x) € R™, m is the number of monomials in the polynomial basis.
If we suppose that u; is the value at a node ¢, then with the difference between the
local approximation and the nodal value at a node 1 there exists a residual error:
€i(x,%;) = [u; —ul(x,%;)]. In the meshless method, each a node ¢ is associated a
compact support with the dilation a and weight function W;(x, a). By minimizing
the difference between the local approximation and the nodal value at a node 2
associated with the weight function W;(x,a) we have

J(a(x)) = Z W, (x,a)[u; —ul(x,x,)]? = Zwi(x,a)[ui —p(x:)a(x)]?, x; € B;
=1 1=1 (24)
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where n is the number of nodes in compact support B, W;(x,a) = W;(x — x;,a)
is a weight function with compact support B; of measure a, compact support
corresponds to the domain influence of the weight function.

The stationary of eq. (2.4) with respect to a(x) leads to:

a.;(;g)) s 6a (Zw (%,a)[u: - px:Ja()]?) = 0 (2.5)
or .
Z —p7 (x:) Wi(x,a)[u; — p(x;)a(x)] =0,
so that e |
EpT(xt)w (x. a)p(x:)alx) = EpT(x,)w (x,a)as (26)
Put

EP (x:) Wi(x, a)p(x),
C(x,a) = [Wl(x,a)p(xl) W (x,a)p(xz2) - - Wa(x,a)p(xa)],
= ' (2.7)
ul = [u; ug - uy,]

and note that: W;(x,a) = W(x — X;, a), the equation (2.6) becomes as following
a(x) = A~ !(x,a)C(x,a)u. (2-8)

The local approximation uf(x,X) = p(X)a(x) is rewritten as:
u’(x,%) = p(X)a(x) = p(X)A~!(x,a)C(x,a)u. (2.9)

The fixed point X is arbitrary, it can be any point x € 0, therefore, one can let
“move” over the whole domain, X — x, which leads to a global approximation of
u(x), i.e.

u}(x) = lim u(x,x) vxen (2.10)
ul(x) = p(x)A~' (X)C(x)u = Y _ ¥y(x)u; (2.11)
1=1

3. Application: Timoshenko Beam Problem 2-D

Consider a beam of length L subjected to a parabolic traction at the free end
as Fig.1. The beam has characteristic height D and is considered to be of unit
depth and is assumed to be in a state of plane stress.

241




" ¥
;S

L : Kl

Fig. 1. A cantilever beam 2-D for comparison with the analytic solution
from Timoshenko and Goodier

The exact solution to this problem is given by Timoshenko and Goodier [5]:

D2
4 6L — 3 - e I8
u 6EI [( L - :l:):c+(2+u)(y g )] -
D '
Uy = o= [3uy (L—a)+ (4+5u)—— + (3L — z)z ]
2
where I = Ty moment of inertia of the beam.
The stresses corresponding to the displacements (3.1) are
P(L —=z)y
azz(x, y) = —_(_I—z— >
oyy(z,y) =0, (3.2)
P i D*
azy(z,y) ﬁ(—’— R )

" The problem was solved for the plane stress case the regular mesh of nodes and
the foundation mesh used to integrate the Galerkin weak form. In each integration
cell, 4 x4 Gauss quadrature was used to evaluate the stiffness matrix. The solution
were obtained using a linear basis function with the cubic spline weight function.

3.1. Discretization of the equation _
The equilibrium equation on the domain 2 with boundary T’
V-o+b=0 in (3.3)

o: stress Cauchy tensor with the displacement u and the body force vector b, the
boundary conditions

o-n=% on T, (3.4)
u=u on T, (3.5)




n is the unit outward normal on the boundary surface, ' = T', UT;, with T =
I'.NT; =0, |, t the prescribed values on the bound respectively. For the linear
elastostatic problem € = V,u and ¢ = De. '

The variational form (weak form) of the equilibrium equation is formulated
as follows. Consider the trial function u(z) € H! and the Lagrange multipliers
A € HP for all test functions év(z) € H', 6\ € HP, they satisfy the following
equations '

/5(V,VT)adﬂ—/6vT-bdn-/&vT-EdI‘——/aT-(u—ﬁ)dI‘—-/évT-AdF =0

9] 0 re | LA
(3.6)

Vév € H', 6) € HO,

where V,vT is the symmetric part of VvT, H!, HC are Hilbert spaces of degree
one and zero, respectively. The equation (3.6) satisfy (3.1), (3.2), (3.3), but the
trial functions do not satisfy the essential boundary condition. The Lagrange
multipliers are written:

Az} = Ne(s)hi, =z=ETy

(3.7)
oA(z) = Ni(8)6A;, z€T,

N;(s) is Lagrange interpolation and s is the arclength of the bound. Finally, we
have the system of equations under matrix form as following:

e 5] (1= 1{a) 9

with
K= / BT DB,dq,
Q

Gix = —/(I);del‘,
Tu

(3.9)
fi= /<I>¢Z,-d1‘+/<1>,-b,-dn,

T )
gk = —/Nkﬁkdr,
Tu
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where

[®;. ©
B; = 0 ®;y
£ Qi,y Ql
[N, 0
M= [N 0|5 M= (BT
F M B, -0 0
- v 1 = | B ; — |z Ny
. D 1 — 2 &\ o ] [0 Sy]’ [n] [0 ny nz]
g - 1 if prescribed u, on 'y
1o if non-prescribed u; on 'y
3 . (3.10)
B { 1 if prescribed vy on T,
Y7 1o if non-prescribed uy on I'y,.
The rate of convergence in energy is calculated as
1/2 ,
1Bl = { / (e — &) TD (27 — e**¢)an) (3.11)
Q
or . -
1Bllze = {2 / (6°% — 0*") D~} (6% — o) d} (3.11)

Q
¢ is defined as the symmetric gradient of the displacement u. The value h was
chosen to be the horizontal distance between the nodes in the model, and in each
case a dpya.y of 2.0 with cubic spline weight function was used. In addition, 4 x 4
Gauss quadrature was used to integrate the Galerkin weak form, 4 points Gauss
quadrature was used to integrate the q vector and G matrix along the essential
boundary.

—

=

o |
a) — support node i b) cells 10 X 5
Fig. 2. Cells and distribution of the nodes
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3.2. Implementation
Get xT =[z y].
The linear basis function 2-D is chosen:

p’=01 z y|=pT(x)

4 1 1
AX) =) W —x)px)p (%) = W(x—x1) |21 2} zp | +
i=1 Y1 Tiyi Yl
1z Y2 1 ry
+W(x—x2) |22 22 zoya|+---+Wx—x,)|z, =2
Y2 ZTaYy2 y% Yn ZTnln

The shape functions:
m 3
®:(x) = ) p;(x)(A7 (x)B(x));s =pTA™!B:.
j=1

The derivative shape function:
i, = 7,7 (%) Bi (%) + (%) Bi,z(x)
with

The weight function

(3.12)

(3.13)

Yn
ZnlYn
Yr

(3.14)

(3.15)

(3.16)

W(x — x,-)’z Wi(r;) W(r,) =W, W,
with
¢ 2 2 3 1
§—4rz+4rz rz§—2~
= 4 4 1
it L 5—4r;+4r§———r: — < ¥ <1
0 e > 1
(5—4ry+4ry ry§§
W, = 4 4 1
y \ -3-—4Ty+41':-—'3‘7'3 §<Ty31
. 0 Ty >1
z— & - Y
e = “ d ‘“ sy Ty = ”yd y‘” s Gmz = dmax * Czi, dmy dmax * Cyi-
mz my
The derivative weight function:
dw dw.
= . W = —y e W
W,z e v Wy dy z
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3.3. Flowchart

l

- Define the physical dimensions and

material properties.

l

- Define the plane stress D matrix, the nodal! coordinates for a uniform
mesh, the influence for each node in the mesh.

|

- Define the cell quadrature, the Gauss
points, weights, Jacobian for each cell.

1

- Loop over Gauss points:
e Determine nodes in the neighborhood of the points Gauss.
e Determine weights, shape functions, shape function
derivatives for nodes 1 to n.
e Assemble B matrix and add contributions to K matrix.

1

e Determine nodes on traction boundary and essential boundary.
e Set up Gauss points along traction boundary and essential boundary.
e Integrate forces along traction boundary to form f vector.

t

O Integrate Lagrange multipliers along essential boundary
to form the G matrix and q vector

O Enforce essential boundary conditions using Lagrange multipliers

1

O Solve for nodal parameters u;

l

e Loop over Gauss points.
O Determine exact and analytical stress at quadrature points.
O Assemble contributions to L2 error norm.

3

Print total error in strain energy and drawing

l

Stop
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3.4. Results

Table. Comparision of vertical displacement at end of beam
the solution exact: ugx“t = —0.0089, uniform space, P = 1000

Number Size of Vertical Relative of  Energy Errors norm

of cells support displacement  errors (%) (107%)  of energy
(u(exact) . )
y — Uy

dmax Uy (exact)
Uy
60 1:5 -0.00884 0.6 0.7814 0.0045
60 2.0 -0.00888 0.2 0.7885 0.0034
60 3.5 -0.00891 0.01 0.7921 0.0014
48 1.5 -0.00876 1.57 0.7673 0.0052
48 2.0 -0.008876 0.34 0.7878 0.0038
48 3.5 -0.008898 0.025 0.7917 0.0008
40 1.5 ~ -0.00870 : 2.2 0.7569 0.0058
40 2.0 -0.00887 0.3 0.7868 0.0043
40 3.5 -0.008897 0.03 0.7915 0.0016
28 1.5 -0.0085 4.5 0.7225 0.0073
28 2.0 -0.00883 6.79 0.7796 0.0052
28 3.5 -0.008897 0.033 0.7914 0.0017
62y Cells=60, dpgy = 35
i .
~50
-100
-150 '.
0 -5 0 5 10
y
W02 : :
D Ocexn-- 4o-mmee-- E -------
O meshless § e
— analytic § cx . ST
T o e e SN N
iy ; :
Q‘; e L T
W, 20 20 60
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1 1/2
e Energy norm |e|| = (-2- /aTD_lodﬂ)

”Euum _ Eczact“
e The relative error for ||¢|| is defined as: r, =
L Hsezact“
size of cell (k)  logio(h) Ty logio(re)
dmax = 4
3.2 1.1631 0.1402 -1.9647
4.8 1.5686 0.2428 -1.4155
9.6 2.2617 0.6322 -0.4585
B, =38
3.2 1.1631 0.2585 -1.3529
4.8 1.5686 0.3081 -1.1773
9.6 2.2617 0.7355 -0.3072
dmax': 3
3.2 1.1631 0.5861 -0.5343
4.8 1.5686 0.6556 -0.4222
9.6 2.2617 0.7961 -0.2280

—— dmax =40

Jog(re)

8- pax=35

—A— dmax =30

Relative errors and convergence rate

4. Conclusions

The Moving Least-8quare approximation do net satisfy Kronecker delta cri-
terion. Fer ‘epforcing essential boundary condltmns, generally, one has proposed
three methods: Langrangian multipliers - ‘Modified Variational Principle - Trans-
formation of the Incremental Equéition from Generalized Coordinates to nodal
coordinate - Pesalty Method. In this paper, we use the first method. Consequent-

log(h)

ly, our given numerical solution is very good. -
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Rate of convergence Rate of convergence
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Fig. (a) Fig. (b)

Model Static admissible (a) and Kinematic admissible (b)

In the Meshless method, the construction of the window function (RKPM),
the Weight function (EFG), the Cloud function (HP-cloud) play a very important
role and define the size of compact support. The cubic spline and the adaptive
parameter are chosen. They are able to allow to choose shape functions near to the
geometry of the boundary thus reducing interpolation error. They also influence
on the stability, the error and the rate of convergence of the method.

The present method is considerably more accurate for computing the displace-
ments and stresses than the finite element method. For example, the relative error
of vertical displacement for meshless: 0.010% and FEM: 0.016%.

No smoothing mesh technique is required to compute the stresses and strains,
as the original result is smooth enough.

No element connectivity is need and only uniform space distributed nodal
points are constructed.

No using HP adaptivity tecknigue is required to augmente order precise. But
it also give the results very precise for the displacements, the shear stresses and
the strains.

Convergence studies in the numerical examples show that the present method
possesses an excellent rate of convergence for displacements as well as for the strain
energy at dpmax = 4.0 and dp,. = 3.5.

The large supports gives more accurate results than smaller supports. A very
small of the size compact support may result in a relatively large numerical error
in using Gauss numerical quadrature to calculate the entries in the system matrix.
If we choose very large of the size compact support which is not to maintain the
local character of the MLS approximation.
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VE PHUONG PHAP PHAN TU TU DO GALERKIN
GIAI BAI TOAN TINH P AN HOI TUYEN TiNH HAI CHIEU

Phuong phdp phén td tw do Galerkin (EFG) 14 phwong phdp khéng luwéi gidi
céc phwong trinh dao ham riéng, ma cdc ham thid va ham kiém tra diung trong
qué trinh r&i rac dwoc xac dinh tir cic ndi suy theo kiéu di truyén binh phwong
t8i thi€u (MLS - dang yéu cla nguyén Iy bién phan). Trong bai bao nay st dung
phwong phip EFG dé gidi bai todn dan hoi tinh. Phuong phdp ndy khéng cin
lwéi nhw “lwéi phidn ti hiru han”, ma chi 1a tap cdc chit diém véi cdc mién dnh
hwéng ctda ching bao phi toan bé mién bai toin. Dic biét cic ham dang cda
né khéng thda man tinh chit delta Kronecker. Chinh vi vy, trong bai bdo nay
ching t6i hiéu lwc héa céc dieu kién trén chinh bang phwong phdp cidc nhan ti
Lagrange. Sau cling, nhiéu vi du béng s8 dwoc giéi thiéu dé minh hoa viéc thuc
hién phwong phdp phan ti hiru han va véi 1oi gidi gidi tich.

K&t qué cho ta thiy phwong phap khéong lwéi kiéu EFG dat két qua tot, téc
d6 hoi tu cao.
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