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ABSTRACT. The Element Free Galerkin (EFG) method is a meshless method for solv­
ing partial differential equations in which the trial a.nd test functions employed in the 
discretization process result from moving least square interpolations (weak form of the 
variational principle). In this paper, the EFG method for solving problems in elasto­
statics {1-D, 2-D) is developed and numerically implemented. The present method is a 
nieshless method, as it does not need a "finite element mesh" and it is only composed by 
the particles with theirs "compact support" (the influence domain) in the whole domain. 
Specially, the shape functions are not satisfying the Kronecker delta property, therefore, 
in this paper, we must enforce the esseutial boundary conditions by the Lagrangian multi­
pliers method. Finally, several numerical examples are presented to illustrate the per­
formance of the EFG method. The results are compared with the other method (EFM) 
and also with the analytic solutions. It shows that the EFG method gives the good effec­
tiveness of the proposed error estimator in the global energy norm and the high rates of 
convergence with the size of the "compact support". 

1. Introduction 

The meshless methods are very attractive for the development of adaptive 
methods ( h-adaptive, p-adaptive and h - p adaptive) for solving boundary value 
problems. The meshless approach is based on the local symmetric weak form and 
moving least squares approximations. The main advantage of this method over 
the widely used finite element method and other so called meshless methods, EFG 
method [Belytschko et al1994] . [Lu et al1994], [Zhu and Atluri 1998], reproducing 
kernel particle method (RKPM) [Liu et all1996], H-P cloud method [Duart et al 
1998], is that it does not need a "finite element mesh" and requires only nodal 
data for the construction of the approximation. The approximating functions 
in EFG are moving least square approximates {MLS). They are not interpolate 
because the approximation does not pass through the data, this is often referred 
to as failure to satisfy the Kronecker delta property. Consequence, the essential 
boundary conditions can't be specified directly. However, we need enforcing the 
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essential boundary conditions by the Lagrangian multipliers method, modified the · 
form of variational principle, the penalty method.... In this paper, we use the 
Lagrangian multipliers method to implement the essential boundary conditions in 
the EFG method [Belytschko et al1994], [Lu et al1994]. 

The distribution of the node is regular and the domain of influence of node 
is the straight line (1-D) and the rectangular (2-D). The local Petrov-Galerkin 
formulation for elasto-statics and its numerical implementation are developed. The 
numerical results is shown by the comparison table with the analytic solution and 
the diagrams (displacements, shear stress, rate of convergence ... ). 

2; Moving Least-Square Formula in EFG Method 

Let u(x) be a sufficiently smooth function (u(x) E C0 (0) at least) that is 
defined on a simply connected open set n E R n . Then for a fixed point X E n, one 
should always be able to approximate u(x) by a polynomial series locally according 
to the Stone-Weierstrass theorem. Thus we can define a local function: 

uf{x,x) = { 
0
u(x) Vx E B(x), 

_ Vx (/. B(x), 
(2.1) 

where the open sphere B(x) is,defined as 

B(x) = {x\lx - xl--< r,x E 0 }· (2.2) 

The local approximation uf(x,x) of the function u(x) is expressed as the inner 
product of a vector of the polynomial basis p(x) and a vector of the coefficients 
a(x): 

uf(x,x) = p(x)a(x) XE 0, (2.3) 

where p(x), a(x) E Rm, m is the number of monomials in the polynomial basis. 
If we suppose that Ui is the value at a node i, then with the difference between the 
local approximation and the nodal value at a node i there exists a residual error: 
ci(X,Xi) = [ui - uf(x,xi)] . In the meshless method, each a node i is associated a 
compact support with the dilation a and weight function W i(x, a). By minimizing 
the difference between the local approximation and the nodal value at a node i 
associated with the weight funCtion W i{x, a) we have 

n n 

J(a(x)) . L W i(x, a)[ui- uf(x,xi)] 2 = L Wi(x,a)[ui- p(xi)a(x)]~, Xi E. Bi 
i = l i=l 

(2.4) 
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where n is the number of nodes in compact support B, W i(X, a) · W i(X- Xi, a) 
is a weight function with compact support Bi of measure a, compact support 
corresponds to the domain influence of the weight function. 

The stationary of eq. (2.4) with respect to a(x) leads to: 

a.J(a(x)) a ( ~ 2) 
aa(x) = aa(x) ~ w i(x, a)[ui- p(xi)a(x)] = 0 

t = l 

(2.5) 

or 
n 

L - pT(xi)Wi(x,a)[ui- p(xi)a(x)] = 0, 
i=l 

so t_hat 
n n 

LPT{xi)Wi{x,a)p(xi)a(x) = LPT(xi)Wi(x,a)ui. {2.6) 
i=l i=l 

Put 
n 

A(x,a) = LPT(xi)Wi(x,a)p(xi), 
i=l 

(2.7) 
T . 

u = [u1 u2 · · · un] 

and note that: Wi{x, a) = W(x - Xi, a), the equation {2.6) becomes as following 

a(x) = A - l (x, a)C(x, a)u. (2.8) 

T~e local approximation uf(x,x) = p(x)a(x) is rewritten as: 

uf(x,x) = p(x)a(x) = p(x)A - 1 (x,a)C(x,a)u. (2.9) 

The fixed point x is arbitrary, it can be any point x E 0, therefore, one can let 
"move" over the whole domain, x -+ x , which leads to a global approximation of 
u(x), i.e. 

u~(x) = j im uf{x,x) 
X -+X 

'v'x E 0 (2.10) 

n 

u;(x) = p(x)A - 1 (x)C(x)u = L Wi(x)ui (2.11) 
i = l 

3. Application: Timoshenko Beam Problem 2-D 

Consider a beam of length L subjected to a parabolic traction at the free end 
-· as 'Fig. 1. The beam has characteristic height D and is considered to be of unit 

depth and is assumed to be in a state of plane stress. 
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L 

Fig. 1. A cantilever beam 2-D for comparison with the analytic solution 
from Timoshenko and Goodier 

/ 

The exact solution to this problem is given by Timoshenko and Goodier [5]: 

Ux = ;;; [(6L- 3x)x + {2 +11}(y2
- ~

2

)], 
p [ .iJ2x ] u11 = 

6
EI 3vy2 (L- x) + (4 + 5v)-

4
- + {3£- x)x2 

, 

D2 
where I = 

12 
- moment of inertia of the beam. 

The stresses corresponding to the displacements (3.1} are 

P(L- x)y 
O'xz(x, y) = I · , 

a1111 (x, y) = 0, 

p (Dz ) O'zy(x, y) = 2I 4 - y2 . 

{3.1} 

(3.2} 

~ The problem was solved for the plane stress case the regular mesh of nodes and 
the foundation mesh used to integrate the Galerkin weak form. In each integration 
cell, 4 x 4 Gauss quadrature was used to evaluate the stiffness matrix. The solution 
were obtained using a linear basis function with the cubic spline weight function. 

3.1. Discretization of the equation 

The equilibrium equation on the domain 0 with boundary r 

V · a+h = O inn (3.3) 

a: stress Cauchy tensor with the displacement u and the body force vector b, the 
boundary conditions 

a · n = t on ft 

u = U: on fu 
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n is the unit outward normal on the boundary surface, r = r u u r t, with r = 
r u n r t = 0, u, t thE! prescribed values on the bound respectively. For the linear 
elastostatic problem e = V 8 u and u = De. · 

The variational form (weak form) of the equilibrium equation is formulated 
as follows . Consider the trial function u(x) E n1 and the Lagrange multipliers 
~ E H 0 for all test functions 6v(x) E Hl, 6~ E H 0

, they satisfy the foilowing 
equation~;~ 

j 6(V8 vT}udO-j6vT·bdO - I 6vT ·tdr - I u'r · (u-u}dr - I 6vT·~df=O 
n n I't " r.. I'u 

(3.6) 
'r/6v E H 1

, 6~ E n°, 
where VavT is the symmetric part of VvT, H 1 , no are Hilbert spaces of degree 
one and zero, respectively. The equation (3.6) satisfy (3.1), (3.2) , (3.3), but the 
trial functions do not satisfy the essential boundary condition. The Lagrange 
multipliers are written: 

~(x} = Ni(spi , X E r u 

6~(x) = Ni(s)6>..i, X E r u 
(3.7) 

Ni(s) is Lagrange interpolation and s is the arclength of the bound. Finally, we 
have the system of equations under matrix form as following: 

with 

K ij = I B'[ DBjdO, 
n 

Gik = -I ~iN~cdf, 
li = I ~itidr + I ~ibidn, 

I't n 

q~c =-I N~cu~cdr, 
I' u 
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where 

Bi= 

Nk . 

[~ 
v 

. D= 
E 1 

1 - v 2 
0 

[ ~~.. 0 ] 
0 ~i,y 

~i,y . ~i,z · 

[ ~k ~kl; Nk = (Bk]T[Df[n]T[-?'J 

0 . 0 ] [SJ = [ ~z : ;Y] ; [nJ =. [no" 1 -"- V 1 

2 . 

if prescribed Uz On f u 

if non-prescribed Uz On f u 

if prescribed U.y on r u 

if non-prescribed Uy on f u· 

The rate of convergence in energy is calculated as 

or . 

IIEIIL2 = {~I (capp- cant)TD(capp- canl)dO} 1/ 2 

n 

IIEIIL2 = {~I (uapp- uanl) T n-1 (uapp - uanl)dn r/2 
n 

0 ny ] 
ny nz 

(3.10) 

(3.11) 

(3.11') 

c is defined as the symmetric gradient of the displacement u . The value h . was 
chosen to be the horizontal distance between the nodes in the model, and in each 
case a dmax of 2.0 with cubic spline weight function was used. In addit ion, 4 x 4 
Gauss quadrature was used to integrate the Galerkin weak form, 4 points Gauss 
quadrature was used to integrate the q vector and G matrix along the essent ial 
boundary. 

a) - support node i b) cells 10 X 5 

Fig. 2. Cells and distribution of the nodes 
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3.2. Implementation 

Get xT = [x y]. 

The linear basis function 2-D is chosen: 

A(x) = t W(x- Xi)p(xi)PT(xi) = W(x- xi) [:1 

1=1 Y1 

y, ] 
X1Y1 + 

Yr 

+ W(x- x2) [:2 :~ 
Y2 X2Y2 

[X~ 
Yn 

The shape functions: 
m 

~i(x) = L Pi(x)(A - 1 (x)B(x))ii =pTA - 1 Bi . 
i = 1 

The derivative shape function: 

with 

The weight function 

with 

llx- Xill 
Tz = d ' 

mx 

~i,z = l~(x)Bi(x) + l(x)Bi,x(x) 

--y(x) =A - 1 (x)p(x) 

W(x- Xi) = W(rz) · W(ry) = W z W y 

2 
- - 4r2 + 4r3 
3 z z 

4 2 4 3 
-- 4r + 4r - - r 3 X X 3 X 

0 

~- 4r2 + 4r3 
3 y y 

4 2 4 3 
-- 4r +4r - - r 3 y y 3 y 

0 

1 

1 
T <­z - 2 

- < Tx < 1 2 -

1 

Tx > 1 
1 

T < ­y- 2 

- < Ty < 1 2 -
Ty > 1 

The derivative weight function: 

dWx 
W,z = --;£;: • Wy 

dWy 
w ,y = dy ·Wx 
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x2 

n 

XnYn 

(3.12) 

(3.13) 

Yn ] 
XnYn 

y~ 

(3.14) 

(3.15) 

(3 .16) 



3.3. Flowchart 
I Start I 

l 
- Define the physical dimensions and 

material properties. 

l 
- Define the plane stress D matrix, the nodal coordinates for a uniform 

mesh, the influence for each node in the mesh. 

l 
- Define the cell quadrature, the Gauss 
points, weights, Jacobian for each cell. 

l 
- Loop over Gauss points: 

• Determine nodes in the neighborhood of the points Gauss. 
• Determine weights, shape functions, shape function 

derivatives for nodes 1 to n. 
• Assemble B matrix and add contributions to K matrix. 

J 

• Determine nodes on traction boundary and essential boundary. 
• Set up Gauss points along traction boundary and essential boundary. 

• Integrate forces along traction boundary to form f vector. 

l 
0 Integrate Lagrange multipliers along essential boundary 

to form the G matrix and q vector 

0 Enforce essential boundary conditions using Lagrange multipliers 

t 
lo Solve. for nodal parameters Ui J 

l 
• Loop over Gauss points . 

0 Determine exact and analytical stress at quadrature points. 
0 Assemble contributions to L2 error norm. 

1 
I Print total error in strain energy and drawing J 
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3.4. Results 

Table. Comparision of vertical displacement at end of beam 
the solution exact : u~xact = - 0.0089, uniform space, P = 1000 

Number 
of cells 

60 

60 

60 

48 
48 
48 

40 

40 

40 

28 
28 
28 

6:c.y 
0 

-so 

-tOO 

-150 
-to 

Size of Vert ical Relative of Energy Errors norm 
support displacement errors(%) {1o- 4 ) of energy 

( (exact) ) 

dmax Uy 
Uy .- 'Uy 

(exact) 
--- u!l 

1.5 -0.00884 0.6 0.7814 0.0045 

2.0 -0.00888 0.2 0.7885 0.0034 
3.5 -0.00891 0.01 0 .7921 0.0014 

1.5 -0.00876 1.57 0 .7673 0.0052 
2 .0 -0.008876 0 .34 0 .7878 0.0038 
3 .5 -0.008898 0.025 0.7917 0.0008 

1.5 -0.00870 2.2 0.7569 0.0058 
2 .0 -0.00887 0 .3 0.7868 0.0043 

3.5 -0.008897 0.03 0 .7915 0 .0016 

1 .5 -0.0085 4.5 0 .7225 0 .0073 
2.0 -0.00883 6.79 0 .7796 0.0052 
3.5 -0.008897 0.033 0.7914 0.0017 

Ce!ls =oU, t1m3 )( =3.5 

-5 

o me5hless 
- analytic; 

0 s 
y 

O"z x 

10 

m~2 ~----~----~--~ 
I I 
' I 

~ 0 - - - - -- -: - - -- - ---:- - - -- - - -

~ -2 ---- -- - - : - - - --- - - ~- - - - -----
~ -4 -- ----- - -:- - - - - - ~ - - - - ----

·~ : I 

,::;- -6 --- - - -- - ,------- " -- - - - - - -
i:i I I 

-8 - - ------~- ------- -:-- .-- ---- . 
I I 

I ' -10 1.-....----.L.------'-------' 

0 20 40 60 
X 
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(
1 I ) 1/2 • Energy norm lle:ll = 2 uTD-1udO 

!le:num _ ge:z:actll 
• The relative error for_ll_e:ll isdefined as: re = !le:e:z:actll 

size of cell (h) log10(h) 

0 

-~5 

Qj-
~ -1,0 

~ -......;;; 

-1,5 

-2,0 

-2,5 

4. Conclusions 

dma.x = 4 

3.2 1.1631 0.1402 -1.9647 
4.8 1.5686 0.2428 -1.4155 
9.6 2.2617 0.6322 . -0.4585 

dmax = 3.5 

3.2 1.1631 0.2585 -1.3529 
4.8 1.5686 0.3081 -1.1773 
9.6 2.2617 0.7355 -0.3072 

dmax = 3 

3.2 1.1631 0 .5861 -0.5343 
4.8 1.5686 0.6556 -0.4222 
9.6 2.2617 0.7961 -0.2280 

3 

+-----------------~~----------~1-+- dm~=4,0 

......_ t1max :::.3.5 

+-----~----~£_----------------~1-A- dmdx=.J.O 

log(h) 

Relative errors and convergence rate 

The Moving ·teast-&qu~ approXi.JII.ation ~o not satisfy Kronecker delta cri­
terion. Fer ~rcing ~ntial boun~ conditi_~n.s, generally, one has proposed 
three metfiods·: Langrangian multipliers - ·Modified Variational Principte - Trans­
formation of the ~r-emental Equ~tion from Generalized Coordinates to nodal 
coordinate - Peaalty Method. In this paper, we use the first method. Consequent­
ly, our given num~ica.l solution is very good. 

' . 
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Rate of convergence 

-~0+---~~~-4---+--~------~ 

20 30 40 · SO . 60 70 80 !lO 
lug(N) 

Fig. (a) 

Ra.te of convergence 
ae·~~~~~~~~====~======1 

~ 0.7 
":"\ 

~ 0.6S 
I:) 

~ 0.6 
-..::. 
~0. 55 

0.5 

0.45 

0.4 

2o Jo +O so 60 10 ao go 
log(N} 

Fig. (b) 
Model Static admissible (a) and Kinematic admissible (b) 

In the Meshless method, the construction of the window function {RKPM), 
the Weight function {EFG), the Cloud function (HP-cloud) play a very important 
role and define the size of compact support. The cubic spline and the adaptive 
parameter are chosen. They are able to allow to choose shape functions near to the 
geometry of the boundary thus reducing interpolation error. They also influence 
on the stability, the •~rror and the rate of convergence of the method. 

The present method is considerably more accurate for computing the displace­
ments and stresses than the finite element method. For example, the relative error 
of vertical displacement for meshless: 0.010% and FEM: 0.016%. 

No smoothing mesh technique is required to compute the stresses and strains, 
as the original result is smooth eu:ough. 

No element connectivity is need and only uniform space distributed nodal 
points are constructed. 

No using HP adaptivity tedtnique is required to augmente order precise. But 
it also give the results very precise for the displacements, the shear stresses and 
the strains. 

Convergence studies in the numerical examples show that the present method 
possesses an excellent rate of convergence for displacements as well as for the strain 
energy at dma.x = 4.0 and dma.x = 3.5. 

The large supports gives more accurate results than smaller supports. A very 
small of the size compact support may result in a relatively large numerical error 
in using Gauss numerical quadrature to calculate the entries in the system matrix. 
If we choose very large of the size compact support which is not to maintain the 
local character of the MLS approximation. 

249 



REFERENCES 

1. Belytschko T., Gu 1 ., Lu Y. Y. Element-free Galerkin method, Int. J. Numer. 
Methods Engrg. 37 (1994) 229-256. 

2·. Duarte C. A., Oden J. T . Hp Clouds- a meshless method to solve boundary 
value problems. Comput. Methods Appl. Mech. 139 {1996), 237-262. 

3. Liu W. K., Chen Y., Uras R . A. Enrichment of the finite element method 
with reproducing kernel particle methods. Current topics in computational 
mechanics, ASME PVP, 305 {1995), 4015-4037. 

4. Lu Y. Y., Belytschko T ., Gu L. A new implementation of the element free -
Galerkin method. Comput. Methods Appl. Mech. Eng. 113 {1994), 397-414. 

5 . Timoshenko S. P., Goodier J . N. Theory of elasticity Me Graw-Hil11970. 

6 . Zhu T ., Atluri S. N. A new meshless local Petrov - Galerkin approach in 
computational mechanics. Comput. Mech. 22 {1998), 117-127. 

Received July 3, 1999 

. VE PHUONG PHAP PHAN TU TV DO GALERKIN 

GlAI BAI TOAN TiNH DAN HC>I TUYEN TiNH HAl CHIEU 

Phu-ang phap phan ttl- tl! do Galerkin (EFG) Ia phU'<mg phap khong lu-&i gicii 
c~c phu-ang trlnh d~o ham rieng, rna cac ham thtr va ham ki~m tra dung trong 
qua trlnh rai r~c dU'<!C XclC d!nh tir cac n9i suy theo ki~U di truyen blnh phu-ong 
t5i thi~u (MLS- d~ng yeu cua nguyen ly bi~n phan). Trong bai bao nay srr d\lng 
phU'<mg phap EFG d~ giru bai toan dan hoi tinh. Phuang phap nay khong can 
hr&i nhtr "lu-&i phlin ttl- hfru h~n", rna chi Ia t~p cac chat di~m v&i cac mien anh 
hu-O.ng cua chung·-bao phu toan h9 mien bai toan. D~c bi~t cac ham d~ng cua 
n6 khong thoa man tfnh chat delta Kronecker. Chfnh vl v~y, trong bai bao nay 
chung toi hi~u ll!c hoa cac dieu ki~n tren ch,fnh b~ng phtrang phap cac nhan ttl­
Lagrange. Sau cung, nhieu vf d~ bang s5 dtrt!C gi&i thi~u d~ minh h<;>a vi~c thlJC 
hi~n phtrang phap phan ttl- hfru h~n va v&i lai gicii gicii tfch. 

Ket qua cho ta thay phtrang phap khong ltr&i ki~u EFG d~t ket qua t5t, toe 
d9 h9i tl;l cao. 
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