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THE CUBIC NON-LINEARITY OF ORDER ¢
IN THE SECOND APPROXIMATION

NGUYEN VAN DINH
Institute of Mechanics

It is well-known that, for almost quasi-linear systems, the oscillation can -
qualitatively and quantitatively - be determined in the first approximation (order
€). However, for certain systems and even for qualitative information, the calculus
must be performed in the second approximation (order £2). Some of mentioned
systems have been considered in (1, 3, 3|.

Especially, in [4, 5, 6, 7], a systematic study has been devoted to a whole
class of systems that having the quadratic restoring non-linearity as an element of
order €. There. the author has particularly concentrated attention on the effect
of the quadratic non-linearity in the second approximation. It has been shown
that although, in the first approximation, the non-linearity interested does not
express any influence (on a family of harmonic oscillations with arbitrary constant
amplitude and initial dephase and with frequency equal to the own frequency)
it may play an important-even decisive - role in the second approximation. For
instance, under certain condition (very weak friction) and in “combination” with
certain other elements (excitations) of the same order €, the quadratic non-linearity
may produce intense oscillations of parametric type.

In the present paper, intending to develop the results obtained in [4, 5, 6,
7], we examine the class of systems with the cubic restoring non-linearity. This
non-linearity introduces a lot of terms into the equations for stationary oscillations
and makes thus difficulty revealing its own effects. In order to analyse the role of
the cubic nonlinearity in the second approximation, we use the so-called simplified
equations obtained by estimating and neglecting certain terms of order higher than

g2,

The asymptotic method [8] is applied. Typical system are treated and some
qualitative remarks are presented.
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§1. The cubic non-linearity and a self-excitation of order ¢

In this section, we consider a self-excited system of VanderPol type assuming
that the self-excitation is of the same order € as that of the cubic non-linearity. It
will be shown that:

In the first approximation, the cubic nonlinearity introduces an additional fre-
quency of order € but it has no influence on the amplitude (the latter is determined
by the self-excitation).

In the second approximation, the corresponding additional frequency is neg-
ligible while the additional amplitude is of order € and significant. The system
under consideration is described by the differential equation:

E+z= e{h(l —kx*)i—qz"'}, (1.1)

where z is an oscillatory variable, overdots denote derivation with respect to time ¢;
1 is the own-frequency; ¢ is a small positive formal parameter; A > 0 and k > 0 are
coefficients characterizing the self-exciting mechanism; ~ is the cubic non-linearity
coefficient.

Following the asymptotic method [8], the solution in the first approximation
is of the form:

z=acosty, Y=t+40, (1.2)
a=¢eAy(a), 6=eB(a) (1.3)

Substituting (1.2) into (1.1), using (1.3), equating the terms of like power in &
then the ones of same harmonics in 1, we obtain:

a=¢cAifa) = e-’-;g (1 = gaz),

: 3
0 =eBy(a) = s—-s’—yaz.

(1.4)

Thus, in the first approximation, we have a family of harmonic oscillations with

determined (not arbitrary) amplitude a2 = 5’ with arbitrary initial dephase 6,

and with frequency

3

. .' - 8
p=wib=1t+eTal=1+c7]

“ok

3
(thus, there is an additional frequency 5% of order e, due to the cubic non-linear-
ity).
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In the second approximation, the solution is determined from:

3 3
T =acosy + euy(a,y) = acostﬁ-{—e(-’%— cos 3y — i sin3¢) (1.5)
(a=f =cAi(a) +*As(a) =
ha ka? g? 0A, =/% & 5
—6-2—(1——2—) —“{ZAIBI +G.A1E" -l-'yha (Za 1+§)},

6 = eBi(a) + €2By(a) =

3 2 A h2k? + 1542
=-€la2—i{—A1 L __i_vas,}.
8 2a da 128
Evidently, even in the second approximation, we also obtain a family of oscillations

whose “major” amplitude a is given by the equation

3
iy = thaul +

f=0. (1.7)

' L i ; k o
The structure of this equation shows that A;(a) must be of order €2 i.e. (1 - Zaz)

must be of order ¢ (since h is also of order €). So, we can neglect the terms 24, B,

0A ka?
a.Al—a—l and ~yha? (—Z~ - 1) (which are of order £2) and obtain a more simple
a
equation
ha ka? 5vha®
=lud {T — = 0. 1.8
! 2 ( 4 ) 16 ’ ( )
The amplitude is now equal to
4 5 10y
2 2 2
a; = ~ ao(l - s—) =ay — €43 (1.9)
o & 2k k
2
and the dephase @ is
0= {?ﬁaz _ g (h?k* + 1572)}t +46 (1.10)
8 * 256 r ‘

where 8 is the arbitrary initial dephase.

We see that, in the second approximation, the effects of the cubic non-linearity

consists of
3

- a perturbation %92— cos 3¢ of order

; 10
- an additional amplitude —6721 of order € -
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o s 15~4%q4 15~2
- a negligible additional frequency — 2’;:* ~ _1622

For k = 4, 4 — 0,05 we have a? = 1, a2 ~ 0.97.

of order 2.

Remark. The quadratic nonOlinearity Bz? of order € has no effect on the ampli-
tude; it introduces only a negligible additional frequency of order £% (and also a
perturbation of order ¢). ' ’

§2. The cubic non-linearity and an external excitation of order ¢

For non autonomous systems, we first consider a forced one with two elements
of order ¢: - the cubic non-linearity and - an external excitation in the subharmonic
resonance of order one - third. This is the only case in which the interaction
between the cubic non-linearity and external excitations of order ¢ (in non principal
resonances) may occur and, as result, we obtain in the second approximation, a
quadratic parametric excitation. The differential equation governing the system
under consideration is of the form:

i+ wiz= E{Az — vz® — 8ew? cos 3wt} — e?hz, (2.1)

where 8¢ > 0, 3w are intensity and frequency of the external excitation of interest;
eA = w? — 1 is the detuning parameter; k > 0 is the damping coefficient assumed
to be order €2; other notations have been given in §1. In the first approximation,
the asymptotic solution is of the form:

T = acos, P =wt+0, (2.3)
6@ =¢cA;(a,0), 0=cB(a,0). (2.3)

Substituting (2.2) into (2.1), using (2.3), equating the terms of like power in ¢
then the ones of same harmonics in 9 we obtain:

s — 3
a=¢cAi(a,0), 0=¢eBi(a,b)= 55 (A - %az)' (2.4)

We have thus a family of harmonic oscillations with arbitrary constant amplitude
ao and initial dephase 8y and with frequency

: ; 3 '
Y=wtb= ——E-(A-—lag)
w
the latter depends on ag.
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In the second approximation, the asymptotic solution is given by

a®
z =acosy + euy(a,v,0) = acosy) = E{E cos 3y + ecos(2y — 30)} (2.5)

'—520,

a=f=¢e?43(a,0) =

3
{hw — —:—Ifasin 30},

w

6=g= eBi(a,8) + €*Bz(a,8) = (2.6)

—€ 37 g2 32 3ye
= o A )——{Bz—*"—— 30}.
Zw( Rl B L T T R

Constant amplitude and dephase of stationary oscillations satisfy the equations:

f=0, g=0. . (2.7)

3
From the second equation, it follows that B, i.e. (A — —410,2 ) must be of order

e?. So, we can neglect B and rewrite (2.2) as: R
3 :
hw — %asmw =),

3 3~2 3
(A — ——’—Ya.2 — —j—a“) — —l’gacos 36 = 0.
4 128 4

(2.8)

It is easy to see that in the second approximation the interaction between the cubic
non-linearity and the external excitation of frequency 3w produces a quadratic
parametric excitation of order €2 which is represented by the terms

3 3
( — %asinw, ———}Eacos 30) ;

3
a
Other effects of the cubic non-linearity are: - a perturbation 132— cos 3y of
2

3
order € and - a negligible additional frequency ——Tg‘s—a“ of order €2.

In the plane (A, a?), the resonance curve can be identified by the frequency -
amplitude relationship:

3y 392 ,\2 942
W(A,az) = (A = Taz = E—S—a“) + h2w2 = 1—6620.2 = O, (29)

or approximatively

. 342 9
j= 2L + 2L gt 44/ 2L e242 — p2 (2.10)
4 128 16
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For fixed given parameters v = 0.16, e = 0.05, the resonance curves (0), (1) in
Fig.1 correspond to h = 0.000, 0.003 respectively. The two conditions of stability

ow

h >0, —
da?

>0 i (2.11)

are satisfied for the system with damping and along the upper branch of the

resonance curve
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Remark 1. In the second approximation, the cubic non-linearity does not interact
with external excitations e, cosnwt if n # 1,3.

3
Remark 2. Although (A - %az) is of order €2, the cubic non-linearity coefficient

~ and the detuning parameter § may be a little large and the resonance region
may be of order ¢. In the case of the quadratic non-linearity, the resonance region
is very narrow (of order £2).

§3. The cubic non-linearity and parametric excitations of order ¢

The second type of non-autonomous systems is that of parametrically - excited
ones. For this type, the cubic non-linearity may interact with different parametric
excitations. As an illustration, let us consider a system described by the differential
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equation:
i+wirc= E{AJ: — 7z + 2pz cos 4wt} —e?hi, (3.1)
where: 2p > 0 and 4w are intensity and frequency of the parametric excitation

interested (which belongs to the type 2pz™ cos mwt, |[n —m| = 3), other notations
have been explained in §2.

In the first approximation, we have the same family of harmonic oscillations
as that corresponding in §2.

In the second approximation, the asymptotic solution is given by:

T =acosy + euy(a,9,0) = 3 (3.2)
3
. . s " i =
=acosy + E{ a5 €08 3y + = cos(3y — 468) + 0 cos(5% 40)}
( o 2 g -
Ry = 2A 0 e _E{h o pya . P_ . 0 il . 0}
a=e“Ay(a,0) P L = sin @ + = sin 3 15 sin 4
6 = £By(a,0) +*By(a,0) = (A - §'la'~’) (3.3)
’ ’ 2w 4
2 32 2 2 2
- E—{Bf S P - T R 2 cos 40}
2w 128 32 6 |

Neglecting B%, we write the equations for stationary oscillations as:

2 2 2

3
Rty L sin0+e—sin30——pjisin40:0,
. 8 N e p? 3pva?
(A—-—a — —a > - cosf — — cos 30 — cos 46 = 0.
4 128 32 6

Do not identifying the resonance curve, we note only that, in the second ap-
2

proximation, beside the excitation (;)—2 sin 30, —% cos 30) due to the parametric

excitation, there are also two excitations

2 2 2

( - B sin 0, i
32 32

due to the interaction between the cubic non-linearity and the aforesaid parametric
excitation of order €.

3pya

( 3pya?

sin 40, — cos 40)

§4. The cubic non-linearity and excitations of order 2

In this last section, we examine the interaction between the cubic non-linearity
(and other elements) of order € with excitations of order £2. As and illustration we
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consider a combination of two system (1.1) (2.1), assuming that the self-excitation
is of order &:

i+ w?z = e{Az — yz® — 8ew’ cos 3wt} + e®h(1 — kz)z. (4.1)

In the second approximation, the asymptotic solution is determined from:

3

z =acosy +ecuy(a,9,0) = acosy + e{% cos 31 = ecos(3y — 30)}, (4.2)

) £2a ka®?\ 3ve .

a=f= €2A2(a, 0) = —é-w—{hw(l — T) + —jz—-asm30},

0 = g = eBy(a,8) + *Bz(a,8) = (4.3)
€ 3y 2) s"’{ z B . e

——(a-=la?) - = {B? - TL-at - Tacos3s}.
Zw( 4% ) 2w\ P17 1% T Ty 0%

Neglecting B? (which are of order £*) we write the equations for stationary oscil-

lations as:

i

k
hw(l — Zaz) +34ia.sin 30,
(3.4)

3 3~2 3
(A — T'Yaz — %8_“4) — %acos 38 = 0. ~

3
If e = 0 (without excitation of order €), beside the perturbation ’Ygi cos 3y (of
order €), the cubic non-linearity introduces only a negligible additional frequency
—342at

128

termined by the self-excitation (of order €2). Thus, for systems with excitations of
order £, the effect of the “single” cubic non-linearity in the second approximation
is very weak.

4
(of order €2), the amplitude a? = — of stationary oscillations is fully de-

If e # O (with excitation of order €) it appears a parametric excitation, repre-

sented by the terms (-S—’Easin 30, —§l€a cos 30), due to the interaction between
the cubic non-linearity and the external excitation of order £ and the system will os-
cillate in “combined” regime “parametrically and self-excited one”. The resonance
curve of ﬁhis regime can be identified by the frequency amplitude relationship

3y 3% ,\2 ka’\2 9v42%e2%a?®
W ,2=( __2__4) B2 2(1_ )_ -0 (4.5
(487 3T 1wt ) TR 4 16 (4:5)
or, approximatively
3 32 2,2 ko2
A=Tg24 S L i ‘e a? — h? (1 - _az) ' (4.6)
4 128 16 4




For fixed given parameters 4+ = 0.16, e = 0.05, k = 4, the resonance curves (0),
(1), (2) shown in Fig.2 correspond to h = 0.001, 0.005 respectively. We see that
the resonance curve (with admissible amplitudes) is of parametric character (since

h is very small - of order €?). Increasing h, the resonance curve is contracted, it
takes the form of an “oval”, encircling the point I(A = i =0.12,a% ~ e = 1)

the latter is the representative point of the purely self-excited oscillation.

Stable stationary oscillations correspond to the upper branch of the resonance

curve.
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Conclusion.

We have examined some quasi-linear systems with the cubic restoring non-
linearity of order e, In the first approximation, we have a family of harmonic
oscillations whose frequency depends on the cubic nonlinearity coefficient. In the
second approximation, the interaction between the non-linearity interested with
certain types of excitation may cause different effects.

This publication is completed with financial support from The Council for
Natural Sciences of Vietnam.

211




REFERENCES

., 2N ayfeh A. H. Interaction of fundamental parametric resonances with subhar-
monic resonances of order one-half. Journal of Sound and Vibration 96 (3)
(1984), 233-240.

2. Nguyen Van Dinh. Resonance in a quasilinear system under two paramet-
ric excitations. Proceedings of the Fifth National Conference on Mechanics.
Hanoi, 1993.

3. Nguyen Van Dinh. Nonlinearities in a quasi-linear system subjected to ex-
ternal and parametric excitations of different orders. Journal of Mechanics,
NCNST of Vietnam, T. XVIII, No 1, 1996, 22-26.

4. Nguyen Van Dao. Interaction between the elements with different orders of
smallness in non-linear oscillating systems. Proceedings of the Sixth National
Congress on Mechanics. Hanoi, 1997.

5. Nguyen Van Dao. Interaction of the elements characterizing the quadratic
nonlinearity and forced excitation with other excitations. Journal of Mechan-
ics, NCNST of Vietnam, T.XIX, No4, 1997, 11-20.

6. Nguyen Van Dao. Interaction between the elements characterizing the forced
and parametric excitations. Journal of Mechanics NCNST of Vietnam T.XX,

No 1, 1998, 9-20.

7. Nguyen Van Dao. Interaction between the forced and parametric excitations
with different degrees of smallness, Vietnam Journal of Mechanics, NCST of
Vietnam, T.XX, No2, 1998, 11-17.

8. Mitropolski Yu. A., Nguyen Van Dao. Applied asymptotic methods in non-
linear oscillations, Kluwer Academic Publisher, 1997.

Recetved September 15, 1998

PHI TUYEN BAC BA CAP € & XAP XI THU HAI

Xét mot s6 hé da.o dong 4 tuyén cé s6 hang hdi phuc phi tuyén bac ba & cap
ed xap xi thé hai. O xap xi thi nhat c6 ho dao déng tudn hoan véi tin sé phu
thudc s6 hang phi tuyen bac ba. 0] xap xi thir hai, twong téc giita s6 hang phi
tuyén néi trén 1a mgt s8 loai kich déng cling cdp € cé thé giy ra nhiéu hiéu tdng

khac nhau.
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