SYNTHESIS OF 5,7-DIMETHYL-[1,2,4]TRIAZOLO[1,5-a]PYRIMIDINE-2-THIOL AND DERIVATIVES VIA (4,6-DIMETHYLPYRIMIDIN-2-YLSULFANYL)ACETOHYDRAZIDE

Nguyen Tien Cong^{1*}, Mai Anh Hung², Pham Ngoc Nam¹, Nguyen Thi Kim Loan¹

¹Faculty of Chemistry, Ho Chi Minh City University of Education, Vietnam ²Department of Chemistry, Faculty of Science, KU Leuven, Belgium Received 2 December 2013

Abstract

Treatment of (4,6-dimethylpyrimidin-2-ylsulfanyl)acetohydrazide with carbon disulfide in the solution of potassium hydroxide in ethanol gave 5,7-dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidine-2-thiol not 5-[(4,6-dimethylpyrimidin-2-ylsulfanyl)methyl]-1,3,4-oxadiazole-2-thiol due to the occurrence of a complex mechanism. 5,7-Dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidine-2-thiol was transformed into six *N*-substituted amide derivatives by reaction with different chloroacetamides. The structures of all products were confirmed by IR, NMR, and MS data.

Keywords: [1,2,4]triazolo[1,5-a]pyrimidine-2-thiol, amide, (4,6-dimethylpyrimidin-2-ylsulfanyl)acetohydrazide.

1. INTRODUCTION

4,6-Disubstituted-pyrimidine-2-thiols and their derivatives with a broad-spectrum of biological activities [1,2] have been considered as potential antitumor agents and attracted the attention of many of chemists and pharmacologists.

To continue our recent study on (4,6dimethylpyrimidine-2-ylsulfanyl)acetohydrazide

[3,4], we presented here the reaction of this hydrazide with carbon disulfide to form 5,7-dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidine-2-thiol as the result of a complex mechanism. This fused heterocyclic system was then converted to its amide derivatives.

2. EXPERIMENTAL

General procedures: All chemicals and solvents were obtained from commercial sources and used without any further purification. Melting points were determined in open capillaries and the values are uncorrected. HR-ESI-MS were taken on a Bruker MicroOTOF-Q II mass spectrometer. IR spectra were measured in KBr discs on a Shimadzu FTIR 8400S spectrophotometer. NMR spectra were recorded on a Bruker Avance spectrometer (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) using DMSO- d_6 as solvent and tetramethylsilane (0.00 ppm) as an internal standard.

The intermediate compounds 1 and 2 have been synthesized via the procedure reported by Tran Quoc Son and colleagues [1] without further optimization or modification.

5,7-Dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-thiol (3): To a solution of hydrazide 2 (4.24 g, 20 mmol) and potassium hydroxide (5.60 g, 100 mmol) in anhydrous ethanol (40 mL), carbon disulfide (3.0 mL, 50 mmol) was added. The reaction mixture was refluxed for 8 h. The solvents were evaporated off and the mixture was poured into ice water while stirring. The solution was adjusted to pH 3-4 by dropwise adding 2 N solution of hydrochloric acid. The precipitate obtained was filtered and recrystallized from water to give 3 as white crystals (1.88 g, 52.0 % yield). M.p. 265-266 °C. IR (v, cm⁻ ¹): 3277, 3161 (N-H), 3092, 3051 (C-H aromatic), 2924 (C-H aliphatic), 2758 (S-H), 1639, 1562 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 14.00 (1H, brs, SH), 7.27 (1H, s, Hr-H), 2.62 (3H, s, CH₃), 2.52 (3H, s, CH₃). ¹³C NMR (δ , ppm): 172.3, 165.0, 147.8, 146.2, 113.0, 24.0, 16.4. HR-ESI-MS m/z [M+H]⁺ (positive mode): calcd. for (C₇H₈N₄S+H): 181.0542, found 181.0572.

General procedure for synthesis of 2-(5,7dimethyl-[1,2,4]triazolo[1,5-*a*]**pyrimidin-2ylthio)-***N*-**aryl/hetarylacetamides** (**4a-f**): To a solution of 5,7-dimethyl-[1,2,4]triazolo[1,5*a*]**pyrimidine-2-thiol (3)** (0.36 g, 2 mmol) in acetone

(20 mL), anhydrous potassium carbonate (0.28 g, 2

mmol) was added followed by definite aryl/hetaryl 2-chloroacetamide (2 mmol). The reaction mixture was refluxed for 6 h with stirring. The precipitate obtained was filtered and recrystallized from appropriate solvents to give the corresponding amides.

2-[(5,7-Dimethyl-[1,2,4]triazolo[1,5*a*]pyrimidin-2-yl)thio]-*N*-(4-ethoxyphenyl)

acetamide (4a): recrystallized from mixture of EtOH-H₂O as brown needles, 0.41 g, 57.4 % yield. M.p. 241-243 °C. IR (v, cm⁻¹): 3240 (N-H), 3060, 3040 (C-H aromatic), 2920 (C-H aliphatic), 1683 - 1670 (C=O), 1620 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 10.19 (1H, s, N<u>H</u>), 7.48 (2H, d, ³J = 9.0 Hz, Ar-<u>H</u>), 6.86 (2H, d, ³J = 9.0 Hz, Ar-<u>H</u>), 7.10 (1H, s, Hr-<u>H</u>), 4.19 (2H, s, SC<u>H</u>₂), 3.98 (2H, q, ³J = 7.0 Hz, CH₃C<u>H</u>₂), 2.66 (3H, s, Hr-C<u>H</u>₃), 2.54 (3H, s, Hr-C<u>H</u>₃), 1.30 (3H, t, ³J = 7.0 Hz, C<u>H</u>₃CH₂). ¹³C NMR (δ , ppm): 165.4, 164.2, 155.0, 154.6, 146.2, 131.9, 120.6, 114.4, 110.4, 63.1, 35.6, 24.4, 16.4, 14.6.

2-[(5,7-Dimethyl-[1,2,4]triazolo[1,5*a*]pyrimidin-2-yl)thio]-*N*-(3-hydroxyphenyl)

acetamide (4b): recrystallized from DMF as yellow prisms, 0.35 g, 53.2 % yield. M.p. 248-249 °C. IR (v, cm⁻¹): 3555, 3314, 3105 (O-H and N-H), 1678 (C=O), 1633, 1606 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 10.10 (1H, s, N<u>H</u>), 9.40 (1H, brs, OH), 7.05 (2H, m, Ar-<u>H</u>), 6.84 (2H, m, Hr-<u>H</u> and Ar-<u>H</u>), 6.45 (1H, dd, ³J = 8.0 Hz, ⁴J = 1.5 Hz, Ar-<u>H</u>), 4.05 (1H, s, SC<u>H</u>₂), 2.93 (3H, s, Hr-C<u>H</u>₃), 2.49 (3H, s, Hr-C<u>H</u>₃). ¹³C NMR (δ , ppm): 165.7, 164.9, 157.6, 157.5, 155.3, 139.6, 139.5, 129.4, 111.6, 110.7, 109.9, 106.3, 39.0, 24.3, 18.9. HR-ESI-MS (positive mode): m/z [M+H]⁺ calcd. for (C₁₅H₁₅N₅O₂S+H): 330.1019, found 330.1025.

2-[(5,7-dimethyl-[1,2,4]triazolo[1,5*a*]pyrimidin-2-yl)thio]-*N*-(4-methylphenyl)

acetamide (4c): recrystallized from DMF as white prisms, 0.42 g, 64.2 % yield. M.p. 154-155 °C. IR (v, cm⁻¹): 3233, 3178 (N-H), 2993, 2924 (C-H aliphatic), 1668 (C=O), 1633, 1606 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 10.19 (1H, s, N<u>H</u>), 7.36 (2H, d, ³J = 8.5 Hz, Ar-<u>H</u>), 7.07 (2H, d, ³J = 8.5 Hz, Ar-<u>H</u>), 6.83 (1H, s, Hr-<u>H</u>), 4.06 (2H, s, SC<u>H</u>₂), 2.91 (3H, s, Hr-C<u>H</u>₃), 2.48 (3H, s, Hr-C<u>H</u>₃).

2-[(5,7-dimethyl-[1,2,4]triazolo[1,5-

a]pyrimidin-2-yl)thio]-*N*-phenylacetamide (4d): recrystallized from mixture of DMF-EtOH as white prisms, 0.38 g, 60.7 % yield. M.p. 236-238 °C. IR (ν , cm⁻¹): 3204, 3190 (N-H), 3017 (C-H aromatic), 2918 (C-H aliphatic), 1682 (C=O), 1631, 1601 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 10.20 (1H, *s*, N<u>H</u>), 7.48 (2H, *d*, ³*J* = 7.5 Hz, Ar-<u>H</u>), 7.28 (2H, *dd*, ${}^{3}J_{1} = {}^{3}J_{2} = 7.5$ Hz, Ar-<u>H</u>), 7.04 (1H, *t*, ${}^{3}J = 7.5$ Hz, Ar-<u>H</u>), 6.83 (1H, *d*, ${}^{4}J = 1.0$ Hz, Hr-<u>H</u>), 4.07 (2H, *s*, SC<u>H</u>₂), 2.93 (3H, *s*, Hr-C<u>H</u>₃), 2.49 (3H, *s*, Hr-C<u>H</u>₃). 13 C NMR (δ , ppm): 165.8, 164.8, 155.3, 145.1, 139.6, 138.6, 128.7, 123.5, 119.1, 111.5, 39.0, 24.3, 18.9.

2-[(5,7-Dimethyl-[1,2,4]triazolo[1,5*a*]pyrimidin-2-yl)thio]-*N*-(4-nitrophenyl)

acetamide (4e): recrystallized from DMF as dark red prisms, 0.57 g, 79.6 % yield. M.p. 168-169 °C. IR (v. cm⁻¹): 3447 (O-H. N-H), 3049, 3013 (C-H aromatic), 2930 (C-H aliphatic), 1682 (C=O), 1633 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 10.77 (1H, s, NH), 8.20 (2H, d, ${}^{3}J$ = 9.0 Hz, Ar-H), 7.75 $(2H, d, {}^{3}J = 9.0 \text{ Hz}, \text{Ar-}\underline{H}), 6.84 (1H, d, {}^{4}J = 1.0 \text{ Hz},$ Hr-H), 4.16 (2H, s, SCH₂), 2.92 (3H, d, ${}^{4}J$ = 1.0 Hz, Hr-CH₃), 2.49 (3H, *s*, Hr-CH₃). ¹³C NMR (δ , ppm): 166.9, 165.1, 155.3, 145.1, 144.8, 142.5, 139.5, 125.0, 118.9, 111.6, 39.0, 24.4, 18.9. HR-ESI-MS (positive mode): m/z $[M+H]^+$ calcd. for (C₁₅H₁₄N₆O₃S+H): 359.0921, found 359.0937.

2-[(5,7-Dimethyl-[1,2,4]triazolo[1,5*a*]pyrimidin-2-yl)thio]-*N*-(5-methyl-1,3,4-

thiadiazol-2-yl)acetamide (4f): recrystallized from DMF-H₂O as brown prisms, 0.25 g, 37.3 % yield. M.p. 253-256 °C. IR (ν , cm⁻¹): 3483 (N-H), 3155, 3005 (C-H aromatic), 2929 (C-H aliphatic), 1695 (C=O), 1626 (C=N and C=C aromatic). ¹H NMR (δ , ppm): 12.59 (1H, *s*, N<u>H</u>), 6.86 (1H, *d*, ⁴J = 1.0 Hz, Hr-<u>H</u>), 4.19 (2H, *s*, SCH₂), 2.90 (3H, *d*, ⁴J = 1.0 Hz, Hr-<u>CH₃</u>), 2.59 (3H, *s*, Hr-C<u>H₃</u>), 2.50 (3H, *s*, Hr-C<u>H₃</u>). HR-ESI-MS (positive mode): m/z [M+H]⁺ calcd. for (C₁₂H₁₃N₇OS₂+H): 336.0696, found 336.0686.

3. DISCUSSION

From the commercially available and inexpensive starting materials, acetylacetone and thiourea, all products and intermediate compounds were synthesized as shown in scheme 1. The intermediate compounds 1 and 2 have been reported in our previous publications [3, 4].

Arylacetohydrazides, generally in reaction with CS_2 in the solution of potassium hydroxide in ethanol, should cyclize to give 5-substituted-1,3,4-oxadiazol-2-thiol as in recent reports by groups of Tashfeen Akhtar (2008) or Mohammad Amir (2011) [10,11]. However, when (4,6-dimethylpyrimidin-2-ylsulfanyl)acetohydrazide was used for the same procedure, we did not obtain the expected compounds, but 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-thiol.

Synthesis of 5,7-dimethyl-[1,2,4]...

Scheme 1: Synthetic pathway for preparation of [1,2,4]triazolo[1,5-a]pyrimidine-2-thiol derivatives

Figure 1: Plausible mechanism of the formation of 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-thiol (3)

The IR spectrum of compound **3** obtained from hydrazide **2** showed not only a lack of the absorbance band at 1690 cm⁻¹ represented for C=O bond of the hydrazide but also an appearance of the absorption at 2758 cm⁻¹ which was attributable to S- H bond. Characteristic absorption for N-H bonds in the hydrazino $-NHNH_2$ group at 3277 cm⁻¹ and 3161 cm⁻¹ also did not appear in the spectrum. It means that a cyclization has been clearly occurred.

Besides, ¹H NMR spectrum of compound **3**

showed only four signals with the integral intensity of 1:1:3:3, respectively, in which the signals of two methyl groups are not equivalent. The -SCH₂- group therefore has been obviously cleaved from the molecule of hydrazide **2** or 5-(4,6dimethypyrimidine)-2-ylsulfanyl-1,3,4-oxadiazol-2thiol was not formed in our reaction condition.

The HRMS of **3** as shown in the experimental section was clearly inappropriate to the molecular weight of 5-(4,6-dimethypyrimidine)-2-ylsulfanyl-1,3,4-oxadiazol-2-thiol.

In the same manner as the reaction of benzothiazol-2-ylacetohydrazide, the rearrangement (4,6-dimethylpyrimidin-2-ylsulfanyl)acetoof hydrazide when it was treated with CS₂ might happen to form 5,7-dimethyl-[1,2,4]triazolo[3,4a)pyrimidine-3-thiol (3') [5, 6]. However, in our case, the NMR data of compound 3 is agreeable with the spectral data of 5,7-dimethyl-[1,2,4]triazolo[1,5a)pyrimidine-2-thiol [8], not 3' [7]. Thus, we assume after the formation of the intermediate 3', the reaction is continued, converting 3' to 5,7dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidine-2-thiol (3) [9]. A total plausible mechanism of the formation of compound 3 from hydrazide 2 was described in detail in Figure 1.

5,7-Dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidine-2-thiol (**3**) was then treated with different *N*aryl/hetaryl 2-chloroacetamides to easily give 2-(5,7-dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidin-2ylthio)-*N*-aryl/hetarylacetamides (**4a-f**). The IR, NMR, and MS data of these products were presented in the experimental section.

4. CONCLUSION

In the framework of synthesis of potential bioactive heterocyclic compounds, we have prepared six amide derivatives containing 2-(5,7-dimethyl-[1,2,4]triazolo[1,5-*a*]pyrimidine-2-thiol via (4,6-dimethylpyrimidin-2-ylsulfanyl)acetohydrazide compound. We herein also discussed and suggested the mechanism of the formation of this heterocyclic compound.

REFERENCES

1. Tran Quoc Son, Pham Quoc Toan. Synthesis and studying some N-arylidene(4,6-dimethylpyrimidine-2-ylsulfanyl)acetohydrazide, Vietnamese Journal of Chemistry, **43(1)**, 27-31 (2005).

Corresponding author: Nguyen Tien Cong

- Lingappa B, Girisha K S, Balakrishna Kalluraya, N Satheesh Rai, Nalilu Suchetha Kumari, Regioselective reaction: Synthesis of novel Mannich bases derived from 3-(4,6-disubstituted-2thiomethylpyrimidyl)-4-amino-5-mercapto-1,2,4triazoles and their antimicrobial properties, Indian Journal of Chemistry, 47B, 1858-1864 (2008).
- 3. Nguyen Tien Cong, Le Thanh Son, Nguyen Dinh Trieu, Le Thi Hong Nhung, Bui Thi Thuy Linh. Synthesis and transformation of 4-amino-5-[(4,6dimethylpyrimidine-2-ylthio)methyl]-1,2,4-triazole-3thiol, Vietnamese Journal of Chemistry, **49(2ABC)**, 66-71 (2011).
- Nguyen Tien Cong, Le Thi Thu Huong, Tran Thi Hanh, Nguyen Thi Thuc Oanh, Pham Ngoc Nam. Synthesis of some N-aryl/hetaryl 2-{4-amino-5-[(4,6dimethylpyrimidin-2-ylthio)methyl]-4H-1,2,4-triazol-3-ylthio}acetamide, Vietnamese Journal of Chemistry, 50(4A), 20-23 (2012).
- Yan Zhang, Ren Zhong Qiao, Chao Feng Dai, Peng Fei Xu, Zi Yi Zhan. The rearrangement of 2benzothiazolylthioacetyl hydrazide in synthesis of striazolo[3,4-b]benzothiazole-3-thiol, Chinese Chemical Letters, 13(4), 287-289 (2002).
- 6. Nguyen Huu Dinh, Hoang Thi Hue. Synthesis and structure of some derivatives of (benzothiazol-2-ylthio)acetylhydrazine, Vietnamese Journal of Chemistry, 44(4), 524-529 (2006).
- Zhang Xiaojun, Ren Tianrui Chen Fuheng, Ren Jianguo. Synthesis and characterization of some new derivatives of triazololpyrimidine, Journal of Shanxi University, 27(4), 372-376 (2004).
- Tian-Rui Ren, Fu-Heng Chen, Jia-Ju Zhou, Hong-Ming Chen, Zong-Ru Guo. Synthesis of 2-(alkylthio)-1,2,4-triazolo[1,5-a]pyrimidines and 3-(alkylthio)-1,2,4-triazolo[3,4-a]pyrimidines and their Vasodilator activity, Journal of Chinese Pharmaceutical Sciences, 7(4), 171-177 (1998).
- Thomas Novinson, Takayuki Okabe, Roland K. Robins, Phoebe Dea. A solution of structural ambiguity: s-triazolo[1,5-a]- and s-triazolo[4,3a]pyrimidines, Journal of Heterocyclic Chemistry, 12(6), 1187-1190 (1975).
- 10. Tashfeen Akhtar, Shahid Hameed, Najim A. Al-Masoudi, Roberta Loddo Paolo la Colla. *In vitro antitumor and antiviral activities of new benzothiazole and 1,3,4-oxadiazole-2-thione derivatives*, Acta Pharmaceutica, **58(2)**, 135-149 (2008).
- 11. Mohammad Amir, Khalid Saifullah, Wasim Akhter. Design, synthesis and pharmacological evaluation of 1,3,4-oxadiazole derivatives of aryl acetic acid as anti-inflammatory and analgesic agents, Indian Journal of Chemistry, **50B**, 1107-1111 (2011).

Faculty of Chemistry, Ho Chi Minh City University of Education, Vietnam 5 District, Ho Chi Minh City, Email: congchemist@yahoo.com; Tel.: 0908121866.