FLAVONOIDS FROM FISSISTIGMA ACUMINATISSIMA

Received 21 December 2006

NGUYEN HONG VAN, TRINH THI THUY, TRAN VAN SUNG

Institute of Chemistry, Vietnamese Academy of Science and Technology

SUMMARY

From the leaves of Fissistigma acuminatissima growing in Vietnam, two flavonoids, catechin and isorhamnetin-3-o-rutinoside were isolated. Their structures were characterized on the basis of MS and NMR spectra data and comparison with reported data.

Keywords: Annonaeae; Fissistigma acuminatissima; catechin; isorhamnetin-3-o-rutinoside.

I - INTRODUCTION

The genus Fissistigma is a large tribe with ca.70 species in the Annonaceae family [1]. The decoctions of some *Fissistigma* species have been used in Southeast Asia as traditional medicines for treatment of infections and enhancement of blood circulation [2]. Fissistigma acuminatissima (Vietnamese name Cách thư nhọn or Lãnh công lá nhon) is climbing shrub growing in the north Vietnam [1]. In continuation of our investigation on the constituents of F. acuminatissima we now report the isolation and structural elucidation of two flavonoids, catechin (1) and isorhamnetin-3-o-rutinoside (isorhamnetin-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosid, 2). The structures of these compounds were determined by MS, NMR techniques and comparison of those spectral data with reported data.

II - EXPERIMENTAL

1. General

FT-IR: Nicolet IMPACT 410. EIMS (70 eV): MS5989B. NMR: Bruker Avance 500, 499.84 MHz (¹H-) and 125 MHz (¹³C-, ¹³C-DEPT). TMS (δ = 0.0, ¹H) and CD₃OD (δ =

49.0, ¹³C) were references. CC: Silica gel 60, 0.06 – 0.2 mm (Merck) for the first column; Sephadex LH-20 and silicagel 60, 40 – 63 μ m (Merck) for the following columns. TLC: silicagel 60 F₂₅₄ (Merck).

2. Plant material

Leaves of F. acuminatissima were collected in Nghe An province, Vietnam in November 2004. The species was identified by Dr. Ngo Van Trai, Institute of Materia Medica, Hanoi. A voucher specimen is deposited in the Herbarium at the same Institute.

3. Extraction and isolation

The dried and powdered leaves of *F. acumi*natissima (1.4 kg) were extracted with 95% aqueous MeOH at room temperature. MeOH was evaporated *in vacuo*, and the aq. solution was partitioned with *n*-hexane followed by EtOAc and *n*-BuOH. The organic solutions were evaporated *in vacuo* to afford 50; 10 and 15 g extracts, respectively. The *n*-hexane extract was chromatographed over silica gel with gradient CHCl₃/MeOH (95:5 \rightarrow 30:70) to give 40 fractions (Fr-1 \rightarrow Fr-40).

a) Catechin (1)

The crude compound 1 (15 mg) was isolated

648

from fraction 2 (Fr-2) by CC (sephadex LH-20, MeOH) and further purified by column chromatography on silicagel (CHCl₃-MeOH, 70:30);

FT-IR (KBr) v_{max} , cm⁻¹: 3405 (OH), 2924, 1612, 1518, 1463, 1287, 1141; EI-MS 70 eV, m/z (rel. int.): 290 [M]⁺ (42), 271 (4), 152 (40), 139

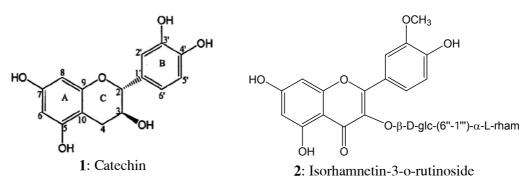
Position	1		2	
	δ_{C}	$\delta_{ m H}$	δ _c	δ_{H}
2	82.85	4.59, d (7.5)	158.91	
3	68.81	3.99, m	135.46	
4	28.50	ax 2.53, dd (16.1, 8.1)	179.36	
4		<i>eq</i> 2.87, dd (16.1, 5.4)		
5	157.56		163.02	
6	96.33	5.95, d (2.3)	100.01	6.24, d (2.1)
7	157.82		166.14	
8	95.54	5.88, d (2.3)	94.94	6.44, d (2.1)
9	156.91		158.54	
10	100.86		105.70	
1'	132.23		123.04	
2'	115.28	6.86, dd (1.9)	116.13	7.96, d (2.1)
3'	146.24		150.86	
4'	146.22		148.36	
5'	116.11	6.78, d (8.1)	114.60	6.94, d (8.5)
6'	120.05	6.74, dd (8.1, 1.9)	124.02	7.65, dd (8.5, 2.1)
Gluc 1"			102.52	5.25, d (7.4)
2"			77.39	3.4 - 3.5, m
3"			78.19	3.4 - 3.5, m
4"			69.79	3.2 - 3.3, m
5"			75.91	3.2 - 3.3, m
6"			68.54	3.4 - 3.5, m
0				3.84 dd (1.5, 11.5)
Rham 1"			104.39	4.56, br s
2'''			72.09	3.62, dd (1.6, 4.3)
3'''			72.30	3.4 - 3.5, m
4'''			73.85	3.4 - 3.5, m
5'''			72.09	3.4 - 3.5, m
6'''			17.87	1.12, d (6.2)
OMe			56.81	3.97 s
OH		4.56 br s		

Table 1: ¹H- and ¹³C-NMR data of compounds 1 and 2 (125/500 MHz in CD₃OD)

NMR: Bruker Avance 500, 499.84 MHz (¹H-) and 125 MHz (¹³C-, ¹³C-DEPT). TMS ($\delta = 0.0$, ¹H) and CD₃OD ($\delta = 49.0$, ¹³C) were references. CC: Silica gel 60, 0.06 - 0.2 mm (Merck) for the first column; Sephadex LH-20 and silica gel 60, 40 - 63 μ m (Merck) for the following columns. TLC: silica gel 60 F₂₅₄ (Merck).

(100), 123 (69), 110 (39), 97 (32), 55 (76); 1 H- and 13 C-NMR data, see table 1.

Compound **2** (18 mg) was isolated as brown powder from Fr26-28 by CC (sephadex LH-20, MeOH) and further purified by column chroma-


b) Isorhamnetin-3-o-rutinoside (narcissoside, 2)

tography on silica gel (CHCl₃-MeOH, 80:20); FT-IR (KBr) v_{max} : 3388, 2925, 1652, 1600, 1506, 1451, 1358, 1061 cm⁻¹; EI-MS 70 eV, m/z (rel. int.): 316 [M-gly]⁺ (100), 301 [M-Me]⁺ (15), 286 [M-30]⁺ (11), 153 (8), 128 (14), 85 (19), 60 (26); ¹H- and ¹³C-NMR data, see table 1.

III - RESULTS AND DISCUSSION

The flavonoids were obtained from the MeOH extract of the leaves *via* partition between *n*-hexane followed by EtOAc and *n*-BuOH. The *n*-hexane extract was chromatographed over silica gel with gradient CHCl₃-MeOH and further purified by column chromatography on silica gel to afford **1** and **2**.

The molecular formula of compound 1 $(C_{15}H_{14}O_6)$ was deduced from combined analysis of EI-MS at m/z 290 [M]⁺, ¹H- and ¹³C-DEPT NMR spectra (*table 1*). The EI-MS of **1** shows the base peak of the A-ring and the B-ring fragments (m/z 139 and 152) due to a Retro-Diels-Alder cleavage, indicating the presence of a flavan-3-ol with two hydroxy groups in each Aand B-ring [3]. The ¹H-NMR spectrum exhibited a doublet at δ 4.59 (H-2), two doublets of doublet multiplet at δ 3.99 (H-3), 2.53 (H-4ax), 2.87 (H-4eq), as well as five aromatic protons. The ¹H- and ¹³C-NMR spectrum data of 1 are identical with those in literature [4, 5]. Catechin and its analogs showed antitumor and antioxidant activities [3, 4].

The EI-MS of compound 2 gave a peak at m/z 316 [M-glycone]⁺, combination with ¹³C-NMR and DEPT spectra leading to the formula $C_{16}H_{12}O_7$ for the aglycone. The aglycone moiety was identified as flavone-3-ol from the characteristic of molecular formula and aromatic signals in the ¹H- and ¹³C-NMR spectra. The ¹H-NMR spectrum showed one methoxy group $(\delta_{\rm H}3.97, \delta_{\rm C}56.81)$ and five aromatic protons. The signals from δ_H 3.3 - 5.3 are assigned of two sugar protons. The β -D-glucopyranose was identified by anomeric signals at $\delta_{\rm H} 5.25$ (d, J = 7.4 Hz) $\delta_{\rm C}$ 104.39 and the rhamnopyranose was identified by methyl signal at δ_H 1.12 (d, J = 6.2 Hz) $\delta_c 17.87$ (table 1). The ¹H- and ¹³C-NMR spectra of sugar moiety were identical with those of quercetin-3-o-rutinoside [6] and the aglycon moiety were identical with those of isorhamnetin [7], therefore the structure of 2

was determined as 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranyloxy-4',5,7-trihydroxy-3'-methoxyflavone (isorhamnetin-3-o-rutinoside, narcissoside). Isorhamnetin-3-o-rutinoside was isolated for the first time from the flowers of *Narcissus tazetta* and then was found in *Lilium aurantum*, *Herniaria glabra* [6 - 8].

Acknowledgements: We thank the Vietnamese Ministry of Science and Technology (MOST), for financial support in form of a project in basic researches (2006-2007). We are indebted to Dr. Ngo Van Trai, Hanoi for the identification of the plant material.

REFERENCES

1. Ban N. T., Thuc vat chi Vietnam (Flora of Vietnam), Hanoi Publishing House for Science and Technics, P. 209 - 210 (2000).

- 2. L. M. Perry. Medicinal Plants of Southeast Asia, MIT press Cambridge, P.19 (1980).
- P. Miketova, K. H. Schram, J. L. Withney, E. H. Kerns, S. Valcic, B. N. Timmermann, K. Volk. J. Nat. Prod., 61, P. 461 - 467 (1998).
- 4. Ninomaya, Unten, Kim. Properties of Green Tea Polyphenols, P. 30 (1988).
- 5. Nonaka Gen-Ichiro, O. Kawahara, I. Nishi

oka. Chem. Pharm. Bull., 31 (11), P. 3906 - 3914 (1983).

- K. Kazuma. Phytochemistry, 62, P. 229 237 (2003).
- 7. J. Y. Lallemand, M. Duteil. Org. Magn. Reson., 9, 179 (1977).
- H. Itokawa, Y. Oshida, A. Ikuta, H. Inatomi, S. Ikegami. Phytochemistry, 20, 2421 (1981).